Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The big clean up after stress

25.05.2018

When cells become stressed, they activate specific response patterns. Würzburg researchers have identified new details of these responses, which can help to get a better understanding of neurodegenerative diseases.

Toxic substances, nutrient shortage, viral infection, heat and many other events trigger stress responses in cells. In such cases, the affected cells launch a programme which tries to protect them against stress-related damages. They usually ramp down the production of endogenous proteins to save resources which they later need to repair cell damages or to survive under the stress conditions for some time.


Microscopic colour image showing cells with normal (green dots) and abnormal (yellow dots) stress granules.

Photo: Team Buchberger

Stress granules are a visible sign of such stress reactions: The small granules consisting of numerous proteins and messenger RNAs build up inside the cell when protein production is suspended. Once the stress is over, the cell takes up its regular operation again and eliminates the stress granules. But if this clearance process does not work according to plan, serious consequences can arise.

Recent studies show that stress granules are suspected to at least contribute to two incurable neurodegenerative diseases: Amyotrophic lateral sclerosis (ALS), which causes muscle atrophy and lethal palsy in its final stages, and frontotemporal dementia (FTD), the second most common type of dementia in people under the age of 65.

Published in "Molecular Cell"

The scientists from the Biocenter of the University of Würzburg have now uncovered new details of the clearance process of stress granules. The study was headed by biochemist Professor Alexander Buchberger. The lead author is Ankit Turakhiya, a member of Research Training Group GRK2243 "Understanding Ubiquitylation:

From Molecular Mechanisms to Disease". Other contributors were Professor Andreas Schlosser from the Rudolf Virchow Center of the University of Würzburg and Professor Kay Hofmann (University of Cologne). The scientists present the results of their research in the current issue of Molecular Cell.

"We were able to demonstrate that the ZFAND1 protein is necessary for the normal clearance of the stress granules. When ZFAND1 is absent, some granules cannot be dissolved and change their structure as a result. These abnormal stress granules then have to be disposed of by autophagy, the cellular waste collection service, in a complex process," Alexander Buchberger sums up the central result of the new study. However, ZFAND1 does not directly impact the elimination process. Instead, it recruits a special enzyme complex required to eliminate defective proteins, the so-called proteasome, bringing it together with the stress granules.

An unexpected discovery

Buchberger explains that they had been surprised to find that the proteasome plays such a prominent role in eliminating the stress granules. He says that until now researchers had assumed that defective proteins at stress granules are eliminated together with the latter by autophagy – an assumption the biochemists were able to correct in their study.

What may appear to be mere fundamental research with little practical relevance to the layperson is in fact highly relevant for medical research. "The accumulation of abnormal stress granules is considered to be a potential cause of neurodegenerative diseases," Buchberger explains. He therefore believes that it is vital to clarify how stress granules are formed and eliminated in order to better understand the pathogenesis of these diseases and find potential targets for treating them.

In a next step, Buchberger and his team are planning to analyse the composition of stress granules in more detail and to identify the defective proteins that need to be removed by the proteasome. Their overarching goal is to shed light on the regulatory processes involved in the creation and elimination of stress granules.

"ZFAND1 Recruits p97 and the 26S Proteasome to Promote the Clearance of Arsenite-Induced Stress Granules"; doi: 10.1016/j.molcel.2018.04.021

Contact

Prof. Dr. Alexander Buchberger, Department of Biochemistry, T: +49 931 31-88031, alexander.buchberger@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht The “TRiC” to folding actin
10.08.2018 | Max-Planck-Institut für Biochemie

nachricht SERSitive: New substrates make it possible to routinely detect one molecule in a million
10.08.2018 | Institute of Physical Chemistry of the Polish Academy of Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

Im Focus: Touring IPP’s fusion devices per virtual-reality viewer

ASDEX Upgrade and Wendelstein 7-X – as if you were there / 360° view of fusion research

You seem to be standing in the plasma vessel looking around: Where otherwise plasmas with temperatures of several million degrees are being investigated, with...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Ph.D. student develops spinning heat shield for future spacecraft

10.08.2018 | Physics and Astronomy

Investigating global air pollution

10.08.2018 | Life Sciences

The “TRiC” to folding actin

10.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>