Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Algae’s Third Eye

11.01.2019

Scientists at the Universities of Würzburg and Bielefeld in Germany have discovered an unusual new light sensor in green algae. The sensor triggers a reaction that is similar to one in the human eye.

Just like land plants, algae use sunlight as an energy source. Many green algae actively move in the water; they can approach the light or move away from it. For this they use special sensors (photoreceptors) with which they perceive light.


Two molecules of the new light sensor 2c-cyclop, which in darkness produces the messenger cGMP. Green light inhibits the signal chain.

Image: Shiqiang Gao / Armin Hallmann, Georg Nagel


In this multicellular Volvox alga, the novel light sensor 2c-cyclop was labeled with fluorescence (green). It shows up in membranes around the nucleus.

(Image: Eva Laura von der Heyde)

The decades-long search for these light sensors led to a first success in 2002: Georg Nagel, at the time at Max-Planck-Institute of Biophysics in Frankfurt/M, and collaborators discovered and characterized two so-called channelrhodopsins in algae.

These ion channels absorb light, then open up and transport ions. They were named after the visual pigments of humans and animals, the rhodopsins.

Now a third “eye” in algae is known: Researchers discovered a new light sensor with unexpected properties. The research groups of Professor Armin Hallmann (Bielefeld University) and Professor Georg Nagel (Julius-Maximilians-Universität Würzburg, JMU) report this finding in the journal BMC Biology.

Light reduces cGMP production

The surprise: The new photoreceptor is not activated by light but inhibited. It is a guanylyl cyclase which is an enzyme that synthesizes the important messenger cGMP.

When exposed to light, cGMP production is severely reduced, leading to a reduced cGMP concentration – and that's exactly what happens in the human eye as soon as the rhodopsins there absorb light.

The newly discovered sensor is regulated by light and by the molecule ATP. Such "two component systems" are already well known in bacteria, but not in higher evolved cells.

The researchers have named the new photoreceptor "Two Component Cyclase Opsin", 2c-cyclop for short. They found it in two green algae, in the unicellular Chlamydomonas reinhardtii as well as in the multicellular Volvox carteri.

Function shown in oocytes and algae

"For many years there has been genetic data from which we could conclude that in green algae there must be many more rhodopsins than the two previously characterized," explains Georg Nagel. Only in Chlamydomonas reinhardtii twelve protein sequences are assigned to the opsins, which are the precursors of rhodopsins.

"So far, nobody could demonstrate the function of these light sensors," says Nagels co-researcher Dr. Shiqiang Gao. Only the research groups from Bielefeld and Würzburg have succeeded in doing so: They have installed the new rhodopsin in oocytes of the toad Xenopus laevis and in the spherical alga Volvox carteri. In both cases, its function could be shown and characterized.

Perspectives for Optogenetics

The authors believe that the 2c-Cyclop light sensor offers new opportunities for optogenetics. With this methodology, the activity of living tissues and organisms can be influenced by light signals. By means of optogenetics, many basic biological processes in cells have already been elucidated. For example, it provided new insights into the mechanisms of Parkinson's disease and other neurological diseases. She also brought new insights into diseases like autism, schizophrenia, and depression or anxiety disorders.

The JMU researcher Georg Nagel and the biophysicist Peter Hegemann (Humboldt Universität Berlin) are among the pioneers of optogenetics: They discovered the channelrhodopsins and found that the light-controlled ion channels from algae can be incorporated into animal cells and then controlled with light. For this achievement, both – together with other researchers – have received multiple awards.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Georg Nagel, Chair of Botany I – Molecular Plant Physiology and Biophysics, University of Würzburg, T +49 931 31-86143, georg.nagel@botanik.uni-wuerzburg.de

Originalpublikation:

"Two-component cyclase opsins of green algae are ATP-dependent and light-inhibited guanylyl cyclases", Yuehui Tian, Shiqiang Gao, Eva Laura von der Heyde, Armin Hallmann, and Georg Nagel, BMC Biology, 6 December 2018, 16: 144 , https://doi.org/10.1186/s12915-018-0613-5

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Genome research shows that the body controls the integrity of heritable genomes
24.07.2019 | Universität zu Köln

nachricht Atrial fibrillation: New marker for atrial damage discovered
24.07.2019 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Hidden dynamics detected in neuronal networks

23.07.2019 | Life Sciences

Towards a light driven molecular assembler

23.07.2019 | Life Sciences

A torque on conventional magnetic wisdom

23.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>