Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas A&M Experts Make New Underwater Discoveries

15.06.2012
Ford had his auto, Winchester his rifle, Boeing loved his jets. Tom Iliffe will gladly settle for his cave crustaceans.

For a scientific researcher, discovering any type of new species is a big thrill, and an even bigger one if the new creature is named after you. Texas A&M University, one of a few select schools that carries the rare designation of being a land grant, sea grant and space grant institution, has several researchers who have identified new marine species and thus contributed greatly to advancing our knowledge of the biodiversity of ocean life.

Iliffe, a marine biology professor at Texas A&M-Galveston, is known internationally as one of the world’s foremost cave divers, and he is an expert on “blue holes,” caves so named because from an aerial view, they appear as a blue circle dotting the ocean. The Bahamas are ground zero for blue holes, and there are believed to be more than 1,000 of them in the area.

Iliffe has explored at least 1,500 underwater caves, more than anyone in the world, and he has done so from the Italian coast to Australia and just about everywhere in between. Along the way, he has discovered more than 300 new marine species and had numerous ones named after him.

Iliffe discovered his first cave species in 1979 in Bermuda caves. Although his initial interest in caves was purely recreational, his first glimpse of the crystal clear blue cave waters and the strange white, eyeless animals living in their depths was enough to prompt him to change his career path.

Cave diving is a critical component of Iliffe’s research as most of the caves that he studies contain a layer of fresh or brackish water at the surface with fully marine water occurring at depth. It is only in this deep saltwater — a lightless, food and oxygen-poor environment accessible only by diving — that Iliffe finds his unique life forms.

“When you explore a cave that probably no one has ever entered and you find a type of marine life that no one knew existed, it is quite an exciting time,” he explains.

Iliffe discovered many new species, such as a type of worm he found in a volcanic, lava tube cave in the Canary Islands off the coast of Africa. The research team members he led agreed they should name the eyeless and depigmented worm after Iliffe, so thus was identified Sphaerosyllis iliffei.

He also was instrumental in discovering a number of new species of Remipedia, initially thought to be among the most primitive of all types of crustaceans. Resembling a centipede, remipedes will never win any beauty contests: they have hollow-tip fangs that inject a venom potent enough to kill small shrimp or other marine life.

Remipedia are also hermaphrodites — they contain both male and female reproductive organs in the same individual. Recent investigations of remipede DNA have found that they are the closest living crustacean relatives of the hexapods — eight-legged animals including the insects.

There are half a dozen other species named for him including a type of shrimp, Typhlata iliffei, found in Bermuda caves, and don’t forget the Iliffeocia illifei, a type of crustacean that resembles a clam and is found in locations including the Galapagos Islands from the Pacific and Bermuda in the Atlantic.

“I’ve been lucky enough to discover many caves that no one has ever entered before,” Iliffe adds. “It’s like going to the far side of the moon. You turn a corner and you realize you are seeing things no one has ever seen, and these include strange, alien creatures. It never ceases to be an amazing experience.”

Mary Wicksten can relate to that feeling.

The Texas A&M biology professor specializes in decapods, crustaceans that range from tiny shrimp to large crabs that have a leg span of more than seven feet. Like Iliffe, her research has made her a world traveler, and to date, she has discovered about 28 new marine species.

Her first occurred in 1981 when she identified Alpheus inca, which is a large shrimp able to make loud snapping sounds with its pinchers, almost as loud as snapping your fingers. It can be found happily snapping in many tide pools along the coast of Peru.

Another of her many discoveries is Encantada spinoculata, which is the shallowest representative of a group of shrimp that are normally found at depths of 3,000 feet or more, but it instead lives in about 150 feet and can be found in the Galapagos.

The gem of her discoveries? “It might be one I found right here on the Texas A&M campus,” she says.

“There are many ditches in this area that contain a lot of water and most of them have crayfish in them. In 1998, I was examining one such ditch near the Wildlife Collections building and found a type that had me stumped. Come to find out, no one had ever identified it.”

The new species — Procambarus caeruleus — is also known as the Navasota crayfish because it can be found near the Navasota River and southern Brazos County.

One reason Wicksten learned why no one had ever identified it before is because it is a recluse of sorts — it likes to burrow underground and only emerges after heavy rains, when it likes to scamper to the playgrounds of those watery ditches.

As for her namesake, consider the Politolana wickstenae, a type of crustacean found in the deep waters of the Gulf of Mexico. “I have to admit it’s not very pretty — it has big jaws and it’s totally blind,” she notes. “But it’s still nice having something named for you. I am having as much fun doing this type of research as I ever have, so hopefully I have a few more discoveries left in me.”

Liz Borda, a post-doctoral researcher in marine biology at Texas A&M-Galveston, has described several new species of polychaetes, marine worms with many hairs, from deep-sea habitats such as hydrothermal vents and wood falls. Living a life in complete darkness and thousands of feet below the ocean’s surface, these worms indirectly depend on bacteria, the very bottom of the food chain, to convert harmful chemicals seeping from the ocean floor and decomposing matter into food for those higher up the food chain.

Some of her recent discoveries include Cryptonome conclava, a worm cryptically living within the galleys and tunnels of sunken wood created by shipworms, living at depths of more than 5,200 feet. Other new species are only found at deep hydrothermal vents, including Archinome levinae from the eastern Pacific Ocean, Archinome maratlantica from the Atlantic Ocean. Archinome jasoni from the Atlantic, Indian and western Pacific Oceans, can be found at more than 13,000 feet below sea level.

“Cryptonome was discovered very recently, within the past two years,” Borda notes.

“As for Archinome worms, we’ve known of their existence in the deep sea since they were discovered over 25 years ago as Archinome rosacea. Since worms from opposite sides of the globe look alike, they were all given the same name. By using genetic tools, I was able to uncover species that look very similar, but these were in fact different species new to science,” she says from her Galveston office.

“The novelty is that we are dealing with creatures that live in environments that are harsh and not easily accessible. What can they tell us about deep-sea environments and how they have evolved over millions of years? Is there an evolutionary connection among sites where they are found and what are their relationships to species found in other marine habitats?

“For me, finding out these answers is really the fun part.”

Media contact: Keith Randall, News & Information Services, at (979) 845-4644 or keith-randall@tamu.edu

Keith Randall | Newswise Science News
Further information:
http://www.tamu.edu

More articles from Life Sciences:

nachricht Exciting Plant Vacuoles
14.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht A microscopic topographic map of cellular function
13.06.2019 | University of Missouri-Columbia

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>