Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas A&M chemical engineer's work could lead to improved DNA analysis

10.09.2010
DNA analysis is poised to experience a significant advancement thanks to the work of a Texas A&M University chemical engineer, who has discovered a way to achieve more effective separation of DNA fragments.

Working with a widely used gelatin substance known as a hydrogel, Victor M. Ugaz, associate professor in the university's Artie McFerrin Department of Chemical Engineering, and graduate student Nan Shi have been able to determine the specific type of conditions that result in the optimum gel pore structure for separation of a wide range of DNA fragment sizes. Their findings appear in the Sept. 3 edition of the journal Physical Review Letters.

"It changes the way you think about the entire process because these findings demonstrate a rational way to connect the pore structure of the gel quantitatively to the mechanism by which the DNA moves through the gel," Ugaz explains. "Researchers can now actually design gels to specifically harness certain effects, and they will need this information we have found to do that."

The enhanced separation technique, Ugaz notes, could benefit a wide array of fields that utilize DNA analysis, including biomedical research, forensics and genetic engineering.

Key to Ugaz's findings is the manner in which DNA fragments move through a hydrogel. Employing a process called "electrophoresis," researchers who study DNA typically embed negatively charged DNA into a porous hydrogel. They then apply an electric field which causes the DNA fragments to move through the pores of the hydrogel. Naturally, smaller DNA chains move faster through the maze of pores than longer strands of DNA.

However, when DNA chains are roughly the same size as the pores through which they are attempting to pass, a process called "entropic trapping" takes place, Ugaz notes. During this process, the naturally coiled DNA fragment, in a sense, has to unthread a bit to pass through a pore, he says. Because the fragment wants to return to its coiled shape, it quickly squeezes through the smaller pore so that it can enter a larger pore where there is enough room for it to return to its natural shape.

Harnessing this entropic trapping effect for separation through a hydrogel marks a significant advancement in DNA studies, Ugaz says.

Although it has long been predicted that entropic trapping effects can potentially benefit a wide variety of applications including separation technologies, actually figuring out how to use this phenomenon previously has been difficult in hydrogels because it has not been clear how this transport mechanism is linked to the gel's porous structure, Ugaz explains.

In other words, hydrogels need to have very specific properties such as pore size distribution, and prior to these findings, there has been no way to know how to choose the right hydrogel that has the right properties, Ugaz notes.

"You want to be able to detect the smallest possible difference in size between DNA fragments," Ugaz explains. "The size of the fragments may be very close, and you may need to detect a difference of one unit in size. To do this, you would want to be able to specifically construct a hydrogel with the necessary pore structure to achieve this."

Ugaz's research provided the "instructions on how to do just that.

"We have a better picture of how to do this than what has existed," Ugaz says. "We know what the gel needs to look like and how it needs to be prepared.

"We're able to understand how to construct a gel that would allow DNA to move via an entropic trapping method that enhances separation performance and in turn leads to more effective analysis. This finding could have enormous implications by helping remove current barriers to separation efficiency"

Contact: Victor Ugaz at (979) 458-1002 or via email: ugaz@tamu.edu or Ryan A. Garcia at (979) 845-9237 or via email: ryan.garcia99@tamu.edu

Ryan Garcia | EurekAlert!
Further information:
http://www.tamu.edu

Further reports about: A&M DNA DNA fragment DNA fragments Hydrogel Texas Ugaz separation technologies

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>