Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test spots early signs of inherited metabolic disorders

09.01.2012
A team of scientists, led by researchers at the University of California, San Diego School of Medicine and Zacharon Pharmaceuticals, have developed a simple, reliable test for identifying biomarkers for mucopolysaccharidoses (MPS), a group of inherited metabolic disorders that are currently diagnosed in patients only after symptoms have become serious and the damage possibly irreversible.

The findings will be published online January 8 in the journal Nature Chemical Biology.

MPS is caused by the absence or malfunctioning of a lysosomal enzyme required to break down and recycle complex sugar molecules called glycosaminoglycans, which are used to build bone, tendons, skin and other tissues. If not degraded and removed, glycosaminoglycans can accumulate in cells and tissues, resulting in progressive, permanent damage affecting appearance, physical abilities, organ function and often mental development in young children. The effects range from mild to severe.

There are 11 known forms of MPS, each involving a different lysosomal enzyme. A number of treatments exist, including enzyme replacement therapy and hematopoietic stem cell transplantation, but efficacy depends upon diagnosing the disease and its specific form as early as possible. That has been problematic, said Jeffrey D. Esko, PhD, professor in the Department of Cellular and Molecular Medicine and co-director of the Glycobiology Research and Training Center at UC San Diego.

"The typical time from seeing first symptoms to diagnosis of MPS is about three years. Since the early signs of disease are common childhood issues like ear infections and learning disorders, the disease is usually not immediately recognized," Esko said.

"A child often has multiple visits with their pediatrician. Eventually they are referred to a metabolic disease specialist, where rare diseases are considered. It takes an expert to identify MPS and its most likely form in each patient. Every subclass of MPS has its own specific diagnostic test, so developing better diagnostics is an essential part of effective treatment. "

In their paper, the scientists describe an innovative method to detect tell-tale carbohydrate structures specific to glycosaminoglycans in the cells, blood and urine of MPS patients. The biomarker assay identifies all known forms of the disease.

Esko is collaborating with Zacharon Pharmaceuticals, a San Diego-based biotechnology company, to develop a commercial diagnostic assay for differentiating forms of MPS from urine and blood samples, a screening test for newborns and a tool for measuring the biochemical response of MPS patients to existing and novel therapies.

"Since the severity of the disease is highly variable among patients, this could provide a tool that a doctor can use to optimize dosing or treatment," said Brett Crawford, Vice President for Research at Zacharon. "Currently, all patients are treated with the same dose of drug."

The biomarker test may also be used to discover new forms of MPS and better characterize existing ones.

Co-authors include Roger Lawrence and William C. Lamanna, UCSD Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center; Jillian R. Brown, James R. Beitel and Brett E. Crawford, Zacharon Pharmaceuticals; Geert-Jan Boones and Kanar Al-Mafraji, University of Georgia, Athens.

Funding for this research came, in part, from the National Institutes of Health, a Kirschstein National Research Service Award and the National MPS Society.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht New substance library to accelerate the search for active compounds
14.07.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht Green is more than skin-deep for hundreds of frog species
14.07.2020 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

New substance library to accelerate the search for active compounds

14.07.2020 | Life Sciences

Green is more than skin-deep for hundreds of frog species

14.07.2020 | Life Sciences

Uncovering the architecture of natural photosynthetic machinery

14.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>