New Test for Germs

Germs in food, bioterrorism, drug-resistant bacteria and viruses—these are the problems of our time that make early detection of pathogens particularly important.

Whereas conventional methods are either slow or require complex instruments, Yingfu Li and a team at McMaster University in Hamilton (Ontario, Canada), additionally supported by the Sentinel Bioactive Paper Network, have now developed an especially simple, universal fluorescence test system that specifically and rapidly detects germs by means of their metabolic products. As the researchers report in the journal Angewandte Chemie, It isn’t even necessary to know which substance the test is reacting to.

Traditionally germs have been detected through microbiological methods, which are very precise but can take days or weeks. PCR- or antibody-based methods are rapid but require many steps and special equipment. “We were motivated to develop an especially simple, but very rapid and precise method,” says Li. “It must also be universal, meaning that it should be possible to develop tests for any desired germ using the same principle.”

“When a pathogen is metabolically active and multiplying in a given medium, it releases many substances into this environment. These are what we want to use,” says Li. The idea is to produce DNAzymes that react to a pathogen-specific product. A DNAzyme is a synthetic one-stranded DNA molecule with catalytic activity. Making a large pool of DNA molecules with random sequences and subjecting these to repeated selection and amplification steps allows for the development of molecules with the desired property.

At the core of the conceptual DNAzyme is a single RNA nucleotide. To its right and left are a fluorescing dye and a quencher. A quencher is a molecule that switches off the fluorescence of a dye when it is nearby. The researchers developed a DNAzyme that binds to a specific metabolic product from E. coli bacteria, which causes the DNAzyme to change its shape. In this altered form, the DNAzyme has RNA-splitting capability and cuts its own strand at the location of the RNA nucleotide. This separates the quencher from the dye, which begins to fluoresce. The fluorescence indicates that E. coli is present in the sample. This DNAzyme does not react to other bacteria.

“Through targeted selection, it should be possible to find a specific DNAzyme for any desired germ,” says Li. “It is not necessary to know what the metabolic product is, or to isolate it from the sample.” By using a common cell culture step, it is possible for the pathogens in a sample to multiply before the test, which allows for detection of a single original cell.

Author: Yingfu Li, McMaster University, Ontario (Canada), http://www.science.mcmaster.ca/biochem/faculty/li/
Title: Fluorogenic DNAzyme Probes as Bacterial Indicators
Angewandte Chemie International Edition 2011, 50, No. 16, 3751–3754, Permalink to the article: http://dx.doi.org/10.1002/anie.201100477

Media Contact

Yingfu Li Angewandte Chemie

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors