Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Termites eavesdrop on competitors to survive

01.09.2009
The drywood termite, Cryptotermes secundus, eavesdrops on its more aggressive subterranean competitor, Coptotermes acinaciformis, to avoid contact with it, according to scientists from CSIRO Entomology and the University of New South Wales at the Australian Defence Force Academy.

Both species eat sound dry wood and can co-exist in the same tree but, while drywood termite colonies contain only about 200 individuals and are confined to one tree, colonies of Coptotermes – Australia’s dominant wood-eating termite – contain around a million individuals, including thousands of aggressive soldiers, and can forage on up to 20 trees simultaneously.

“We already knew that chewing termites generate vibrations which they use to determine wood size and quality, so it seemed possible that one species could detect another using these vibrations,” CSIRO Entomology’s Dr Theo Evans said.

“We already knew that chewing termites generate vibrations which they use to determine wood size and quality, so it seemed possible that one species could detect another using these vibrations,” CSIRO Entomology’s Dr Theo Evans said.“We found that Cryptotermes could use vibration signals to distinguish between their own and Coptotermes individuals. They would even respond to recorded signals.

“This is the first time the ability to identify a different species using only their vibration signals has been identified in termites.

“Because vibration signals move rapidly through wood and can be detected from a distance, the vulnerable species have an eavesdropping advantage as they can detect their aggressive relatives without having to come into contact with them.”

Dr Evans said the advantage to Cryptotermes in avoiding Coptotermes was made very clear in one trial where the Coptotermes tunnelled through a 20mm block of wood and killed all the Cryptotermes.

Cryptotermes and the ‘tree piping’ Coptotermes are heartwood eaters and are among the few termites groups that attack buildings. Eighty-five percent of Australian trees are infested with Coptotermes.

Coptotermes enter trees through their roots and it is their ‘tree piping’ that produces the raw material for the didgeridoo.

This research – conducted in collaboration with Professor Joseph Lai at UNSW@ADFA and with the support of the Australian Research Council – was recently published in the Proceedings of the Royal Society B.

Julie Carter | EurekAlert!
Further information:
http://www.csiro.au

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>