Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology paves the way for the future of identifying proteins inside cells

23.09.2008
A new technology which enables scientists to identify proteins by making a map of the energy flow inside the protein is revealed today in Proceedings of the National Academy of Sciences (PNAS) journal.

The scientists behind the new technology hope to develop a tool which can be used to analyse human cells and find out which proteins are present and in what quantities. Being able to sensitively analyse the protein make-up of cells is important because proteins are involved in every process in human cells, from facilitating immune responses to cell-to-cell communication, and when a cell becomes diseased, for example with cancer, the number of different kinds of proteins in a cell changes.

The new research outlines how an imaging technique known as coherent two-dimensional infrared spectroscopy, 2DIR, has been used to successfully identify proteins in laboratory tests. The technique uses an ultra short pulse of infra-red laser light to cause a vibration in one part of the protein molecule. The researchers then track the movement of energy from this vibration as it moves through the protein, building up an energy flow map of the protein which enables them to identify what kind of protein it is.

Professor David Klug from the Single Cell Proteomics project at Imperial College London, one of the authors of the new paper, explains the significance of their study: "We have proved the principle that it is possible to use this type of spectroscopy to identify proteins and we are now looking to use this knowledge to develop a new tool that can be used to further a broad range of research including drug discovery, diagnostics, biomarker discovery and basic biology.

"This is the first time in over 20 years that a new method for identifying proteins has been discovered, and we're very excited about the possibilities that it will bring to our field."

The technologies under development in the Single Cell Proteomics Project are focussed on improving the sensitivities of proteomic tools to allow single cells to be analysed. Currently, scientists identify and count proteins either by using antibodies or mass spectrometry. The new third potential method, 2DIR, has advantages over the existing methods because it could be more sensitive and provide additional information on how protein activity and function is modulated within cells. "Counting the number of proteins is important, but not enough to understand the biology at work," says Professor Klug.

Potential applications of these methods include the possibility to analyse single cancer cells found circulating in the bloodstream of patients and in the discovery of new biomarkers that might ultimately be used in screening and diagnosis.

The study of proteins, known as proteomics, is the next step for scientists following the identification of all the genes in human DNA in the human genome project. All human cells contain the same 20,000 genes but in different cells different genes are 'switched on' to produce different proteins, and it is the differences between proteins which distinguishes one type of cell from another, and a healthy cell from a diseased cell.

The Single Cell Proteomics (SCP) group at Imperial was established in 2006 with £5 million funding from the EPSRC and BBSRC,.and will run for five and a half years. The project, which is managed under the auspices of Imperial's Chemical Biology Centre, aims to develop a raft of new measurement tools which will enable scientists to analyse proteins in new ways, with greater clarity and at faster speeds than ever before.

This PNAS paper was written in collaboration with Professor Keith Willison, Professor of Molecular Cell Biology at The Institute of Cancer Research, who is a co-holder of the £5M SCP grant. He says: "The development of new single cell, single molecule approaches is vital in the hunt for rare cancer cells."

For more information on the Single Cell Proteomics project go to www.singlecellproteomics.ac.uk

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk
http://www.singlecellproteomics.ac.uk

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>