New technique paves way for medical discoveries

The technique entails preparing samples in a new way and is a development of applied mass spectrometry. Presented in the latest issue of renowned journal Nature Methods, the technique will enable medical researchers to study the mechanisms behind diseases in more detail and, with luck, find new ways of treating them.

“When we developed the method, we were analysing cerebrospinal fluid from healthy subjects and could see that many proteins had sugar structures previously unknown to us,” says Jonas Nilsson, a researcher at the Department of Clinical Chemistry and Transfusion Medicine at the Sahlgrenska Academy. “We know that some of these proteins play a role in diseases such as Alzheimer's disease, and now it's possible to study whether faults in these sugar structures are responsible for the development of the disease.”

There are more than 20,000 proteins in the human body. These proteins ensure that the instructions from the genes are carried out. Around half of them have sugar structures on their surface consisting of chains of sugar molecules. These sugar structures mean that the protein can be recognised by other proteins. Some of these structures can act as a locking mechanism when proteins bind to cells and other proteins. Sugar structures are also found on the surface of cells, where they determine, among other things, which blood group we belong to.

“Sugar structures often play an important role in how a cell or protein functions and how it affects different systems in the body,” says Nilsson. “Being able to study them in more detail is a major step forward for biomedical research.”

The chains of sugars in these structures are attached to the proteins at only one end. The new technique entails attaching a plastic bead to the loose end of these chains and separating the sugared proteins from those that do not have sugar structures. The proteins are then chopped into pieces and the sugar chain is released from the plastic bead, leaving the sugar chain attached to a chunk of protein known as a peptide. The researchers can then study the sugar structure on the peptide and see which protein the peptide belonged to and where on the protein it sat.

MASS SPECTROMETRY
Mass spectrometry is an analytical method which can be used to determine the mass of positive or negative ions. The method can also be used to identify large molecules such as proteins and measure how much of a particular protein a sample contains. Mass spectrometry has been developed over a period of almost a century and is now one of the most important analytical techniques in modern biomedical research.
For more information, please contact:
Jonas Nilsson, researcher, tel: +46 31 342 22 174, mobile: +46 70 838 09 94, e-mail
Journal: Nature Methods
Title of article: Enrichment of Glycopeptides for Glycan Structure and Attachment Site Identification

Authors: Jonas Nilsson, Ulla Rüetschi, Adnan Halim, Camilla Hesse, Elisabet Carlsohn, Gunnar Brinkmalm and Göran Larson

Media Contact

Helena Aaberg idw

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors