New technique enables assessment of drought performance

Due to the increasing demands of industrial, municipal and agricultural consumption on dwindling water supplies, botanists are increasingly engaged in efforts to cultivate plants that have low water requirements.

Barry Pogson led a team of researchers from the Australian National University who investigated whether chlorophyll fluorescence could be used in the assessment of plant water status during such studies. He said “We found that plants’ viability during increasing water deficit could be measured and quantified by measuring changes to the maximum efficiency of photosystem II (Fv/Fm), and that this was easily measurable by chlorophyll fluorometry.”

Other methods of assessing plants’ performance under water deficit have serious drawbacks. Methods that involve detaching parts of the plant are destructive and survival studies rely on qualitative observation of physical symptoms of water deficit stress such as turgor loss, chlorosis, and other qualities that can vary greatly between specimens and are also sensitive to experimental conditions. Chlorophyll fluorescence is non-invasive and minimal technical expertise and a basic understanding of fluorometry. Pogson said “By correlating the decline in the Fv/Fm parameter to loss of viability, our procedure allows the monitoring of survival under water deficit conditions, namely defining a threshold of 33% of well-watered Fv/Fm values.”

This procedure may complement existing methods of evaluating drought performance while also increasing the number of tools available for assessment of other plant stresses.

Media Contact

Graeme Baldwin alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors