Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teamwork in the tropics – pollinators and frugivores are less choosy at the equator

14.09.2012
The bright crimson Andean Cock-of-the-rock eats the fruits of over 100 plant species and disperses their seeds.

It is in good company, since other seed-dispersing birds and pollinating insects in the tropics are also – contrary to prior doctrine – less specialised on individual plant species than their temperate counterparts.


The diet of the bright crimson Andean Cock-of-the-rock (Rupicola peruviana) includes fruits of over 100 different plants of the tropical montane rainforest.

© Matthias Dehling

This is the outcome of a study conducted by an international research group, which is published today in the journal “Current Biology”. This suggests that ecosystem functions such as pollination and seed dispersal in the tropics have a higher tolerance against extirpations of individual species than in the temperate communities.

It is a win-win business for bees and plants: bees forage on plant nectar, and in return they pollinate the next flower they visit. Virtually the same is true for fruit-eating birds, which by the way disperse the seeds of plants. A large number of such mutualistic interactions between species exist in an ecosystem, which together form a complex network. Scientists have now analysed the “Who with whom?” in a worldwide study and have discovered that the specialization of pollinators and seed disperses on individual plant species decreases towards the equator.

Surprising results: Specialists tend to be in the temperate zones
That is somewhat unexpected; after all, since Darwin it has been assumed that many pollinating insects and seed-dispersing birds in the tropics were specialised on a small part of the available plant species. Until now this co-evolution of reciprocal specialization has been an important explanation for the higher plant diversity in the tropics compared to temperate latitudes. “The results of our global analysis contradict the assumption that ecological communities in the tropics are generally more specialised than those in the temperate zones,” say Matthias Schleuning and Jochen Fründ, the lead authors of the study, from the Biodiversity and Climate Research Centre (BiK-F) and the University of Göttingen.

Generalisation as a response to plant diversity
“Our results show that specialization between animal and plant species tend to be rather a consequence of the available resources than the result of long-term adaptation processes,” explains Schleuning. This is also supported by a further finding of the study, according to which contemporary climate and the plant diversity in an ecosystem are more closely related to the interactions between animals and plants than past climate stability. “A simple explanation for this could be that the high tropical plant diversity provides many different resources to animals in a low density. "Whoever is not especially choosy is at an advantage, because then the next food source is not very far away, making foraging more efficient,” says Fründ.

Ecosystem functions in the tropics are probably more robust
The lower specialization in the tropics also provides advantages for the plants, because they are better insured against species extirpations - plants interacting with a number of animal species have a lower risk of extinction if individual species of pollinators or seed dispersers disappear or decline in number. “We therefore suppose that certain ecosystem functions such as pollination and seed dispersal are less susceptible to disruption in the tropics than in the temperate zones. Due to the generalised relationships and the greater diversity, more species can replace the functions of individual declining species,” says Nico Blüthgen, the initiator of the study of TU Darmstadt. Such failures in the relationship between animals and plants can even have a considerable economic impact. This is demonstrated by the current massive collapse of bee colonies in the US, which leads to particularly high costs in those places where there is a lack of alternative pollinators.

For further information please contact:

Dr. Matthias Schleuning
LOEWE Biodiversity and Climate Research Center
Phone + 49 (0)69 7542 1892
matthias.schleuning@senckenberg.de

or

Sabine Wendler
LOEWE Biodiversity and Climate Research Center, Press Officer
Phone + 49 (0)69 7542 1838
sabine.wendler@senckenberg.de

Press images are available in 300 dpi upon request. Please email to sabine.wendler@senckenberg.de

Paper:
Schleuning et al., Specialization of Mutualistic Interaction Networks Decreases toward Tropical Latitudes, Current Biology (2012), http://dx.doi.org/10.1016/j.cub.2012.08.015

LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main
With the objective of analysis the complex interactions between biodiversity and climate through a wide range of methods, the Biodiversität und Klima Forschungszentrum [Biodiversity and Climate Research Centre] (BiK‐F) has been funded since 2008 within the context of the Landes‐Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz (LOEWE) of the Land of Hessen. The Senckenberg Gesellschaft für Naturforschung and Goethe University in Frankfurt as well as other, directly involved partners, co‐operate closely with regional, national and international institutions in the fields of science, resource and environmental management, in order to develop projections for the future and scientific recommendations for sustainable action.

Sabine Wendler | Senckenberg
Further information:
http://www.bik-f.de
http://www.senckenberg.de

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>