Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team pinpoints amino acid variation in immune response gene linked with ulcerative colitis

19.12.2011
The association between the inflammatory bowel disease ulcerative colitis and a gene that makes certain cell surface proteins has been pinpointed to a variant amino acid in a crucial binding site that profoundly influences immune response to antigens, including gut bacteria, reports a team of researchers at the University of Pittsburgh, Cleveland Clinic, Carnegie Mellon University and Harvard Medical School. They published the findings today in the online version of Genes & Immunity.

Variations in genes that regulate immune responses in a region of chromosome 6 have long been linked with susceptibility for many infectious and chronic inflammatory conditions, including ulcerative colitis, said Richard H. Duerr, M.D., professor of medicine, Pitt School of Medicine, co-director and scientific director, UPMC Inflammatory Bowel Disease Center, and the corresponding author of the study. Ulcerative colitis is characterized by recurrent inflammation of the large intestine that results in diarrhea mixed with blood and abdominal pain.

"We tested more than 10,000 points, called single nucleotide polymorphisms, or SNPs, in the gene sequence in this chromosomal region, and we also tested amino acid variations in human leukocyte antigen (HLA) proteins that were deduced from the SNPs to identify those most important for ulcerative colitis," Dr. Duerr said. "Refining the gene association signals in this region enabled us to better understand the underlying mechanisms of the disease."

Using sophisticated association techniques, the authors confirmed that an HLA gene called DRB1, which codes for a protein that is involved in the immune response and routinely tested in tissue matching for organ transplantation, was uniquely related to ulcerative colitis. Variation, or polymorphism, in that gene altered which amino acid was selected for the 11th position in the DRB1 protein – a key location because it is in a pocket of the so-called binding cleft where other proteins, such as antigens or markers of foreign cells, attach.

"This particular position probably plays a significant role in determining the human immune response to extracellular antigens," Dr. Duerr said. "It ties into theories that ulcerative colitis might result from an abnormal immune response to gastrointestinal bacterial antigens or might be an autoimmune disorder caused by an abnormal immune response to a self-antigen."

The researchers also looked for a similar relationship between that amino acid position and Crohn's disease, another chronic inflammatory bowel condition, but did not find a strong association. Still, variants in immune response genes on chromosome 6 likely contribute not only to ulcerative colitis and Crohn's disease, but also to other immune-mediated diseases such as rheumatoid arthritis and multiple sclerosis, added Jean-Paul Achkar, M.D., Department of Gastroenterology & Hepatology, Cleveland Clinic Digestive Disease Institute, an alum of the gastroenterology and hepatology training program at UPMC, and first author of the study.

In addition to Pitt School of Medicine and the Cleveland Clinic, the team included researchers from Pitt Graduate School of Public Health and Children's Hospital of Pittsburgh of UPMC; Harvard Medical School, the Broad Institute of Harvard and the Massachusetts Institute of Technology; the University Medical Center Utrecht, the Netherlands; and Carnegie Mellon University.

The project was funded by National Institutes of Health grants DK068112, AG030653, MH057881, DK062420 and DK076025; a Crohn's & Colitis Foundation of America Senior Research Award; U.S. Department of Defense Grant W81XWH-07-1-0619; and funds generously provided by Kenneth and Jennifer Rainin, Gerald and Nancy Goldberg, and Victor and Ellen Cohn.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see http://www.medschool.pitt.edu

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Researchers find new mutation in the leptin gene
24.06.2019 | Texas Biomedical Research Institute

nachricht Straight to the heart
24.06.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>