Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team explains how mutated X-linked mental retardation protein impairs neuron function

25.06.2014

There are new clues about malfunctions in brain cells that contribute to intellectual disability and possibly other developmental brain disorders.

Professor Linda Van Aelst of Cold Spring Harbor Laboratory (CSHL) has been scrutinizing how the normal version of a protein called OPHN1 helps enable excitatory nerve transmission in the brain, particularly at nerve-cell docking ports containing AMPA receptors (AMPARs).


False color image of a mouse hippocampal neuron (cell body is at lower right) with branchlike dendrites that provide surfaces at which projections from other neurons can connect, by forming synapses. Van Aelst and colleagues have shown that when the OPHN1 protein is mutated, interfering with its ability to interact with another protein called Homer1b/c, AMPA receptors don't recycle to the surface at synapses at the rate they normally do. This adversely impacts synaptic plasticity, the process by which neurons adjust the strength of their connections. Such pathology may play a role in X-linked mental retardation.

Credit: Van Aelst Laboratory, CSHL

Her team's new work, published June 24 in the Journal of Neuroscience, provides new mechanistic insight into how OPHN1 defects can lead to impairments in the maturation and adjustment of synaptic strength of AMPAR-expressing neurons, which are ubiquitous in the brain and respond to the excitatory neurotransmitter glutamate.

Mutations in a gene called oligophrenin-1 (OPHN1) – located on the X chromosome – have previously been linked to X-linked intellectual disability (also known as X-linked mental retardation), a condition that affects boys disproportionately and could account for as much as one-fifth of all intellectual disability among males.

Several different mutations in the OPHN1 gene have been identified to date, all of which perturb nerve cells' manufacture of OPHN1 protein. Previously, Van Aelst and colleagues demonstrated that OPHN1 has a vital role in synaptic plasticity, the process through which adjacent nerve cells adjust the strength of their connections. Cells in the brain are constantly adjusting connection strength as they respond to streams of stimuli.

The new discovery shows how OPHN1 is involved in the trafficking of AMPARs, an essential feature of plasticity in neurons. Neurons move receptors away from synapses into their interior and then back to the surface of synapses to control connection strength. At the synaptic surface, receptors provide an opportunity for the docking of neurotransmitters, in this case glutamate molecules. After a cell has fired, surface receptors are typically brought back into the interior, where they are recycled for future use.

When OPHN1 is misshapen or missing due to genetic mutation, the CSHL team demonstrated, it can no longer properly perform its role in receptor recycling, thus also impairing neurons' ability to maintain strong long-term connections with their neighbors, called long-term potentiation.

Van Aelst's new experiments explain how OPHN1 in complex with another protein called Homer1b/c should normally interact with an area called the endocytic zone (EZ) to provide a pool of AMPARs to be brought to the synapse at a location called the post-synaptic density (PSD). When OPHN1 is mutated, the pool does not form and receptors needed for strengthening synapses are not available. Long-term potentiation is impaired.

"This suggests a previously unknown way in which genetic defects in OPHN1 can lead to dysfunctions in the glutamate system," says Dr. Van Aelst. "Our earlier studies had already shown that OPHN1 is essential in stabilizing AMPA receptors at the synapse. Together, these two essential roles suggest how defective OPHN1 protein may contribute to pathology that underlies X-linked intellectual disability."

###

The research described in this release was supported by National Institutes of Health Grants RO1-MH082808 and RO1-NS082266.

"The X-linked Mental Retardation Protein OPHN1 Interacts with Homer1b/c to Control Spine Endocytic Zone Positioning and Expression of Synaptic Potentiation" appears online ahead of print in

The Journal of Neuroscience on June 25, 2014. The authors are:

Akiko Nakano-Kobayashi, Yilin Tai, Nael Nadif Kasri, and Linda Van Aelst. The paper can be obtained at: http://www.jneurosci.org

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for the impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 600 researchers and technicians strong and its Meetings & Courses program hosts more than 12,000 scientists from around the world each year to its Long Island campus and its China center. For more information, visit http://www.cshl.edu

Peter Tarr | Eurek Alert!

Further reports about: AMPA CSHL Harbor Neuroscience X-linked disability docking function glutamate neurons retardation synapses synaptic

More articles from Life Sciences:

nachricht Channels for the Supply of Energy
19.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Vine Compound Starves Cancer Cells
19.11.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

How Humans and Machines Navigate Complex Situations

19.11.2018 | Science Education

Finding plastic litter from afar

19.11.2018 | Ecology, The Environment and Conservation

Channels for the Supply of Energy

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>