Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team discovers how microbes build a powerful antibiotic

27.10.2014

Researchers report in the journal Nature that they have made a breakthrough in understanding how a powerful antibiotic agent is made in nature. Their discovery solves a decades-old mystery, and opens up new avenues of research into thousands of similar molecules, many of which are likely to be medically useful.

The team focused on a class of compounds that includes dozens with antibiotic properties. The most famous of these is nisin, a natural product in milk that can be synthesized in the lab and is added to foods as a preservative. Nisin has been used to combat food-borne pathogens since the late 1960s.


University of Illinois graduate research assistant Manuel A. Ortega, chemistry professor Wilfred van der Donk, graduate student Yue Hao, biochemistry professor Satish Nair and postdoctoral researcher Mark Walker solved a decades-old mystery into how a broad class of natural antibiotics are made.

Credit: L. Brian Stauffer

Researchers have long known the sequence of the nisin gene, and they can assemble the chain of amino acids (called a peptide) that are encoded by this gene. But the peptide undergoes several modifications in the cell after it is made, changes that give it its final form and function. Researchers have tried for more than 25 years to understand how these changes occur.

"Peptides are a little bit like spaghetti; they're too flexible to do their jobs," said University of Illinois chemistry professor Wilfred van der Donk, who led the research with biochemistry professor Satish K. Nair. "So what nature does is it starts putting knobs in, or starts making the peptide cyclical."

Special enzymes do this work. For nisin, an enzyme called a dehydratase removes water to help give the antibiotic its final, three-dimensional shape. This is the first step in converting the spaghetti-like peptide into a five-ringed structure, van der Donk said.

The rings are essential to nisin's antibiotic function: Two of them disrupt the construction of bacterial cell walls, while the other three punch holes in bacterial membranes. This dual action is especially effective, making it much more difficult for microbes to evolve resistance to the antibiotic.

Previous studies showed that the dehydratase was involved in making these modifications, but researchers have been unable to determine how it did so. This lack of insight has prevented the discovery, production and study of dozens of similar compounds that also could be useful in fighting food-borne diseases or dangerous microbial infections, van der Donk said.

Through a painstaking process of elimination, Manuel Ortega, a graduate student in van der Donk's lab, established that the amino acid glutamate was essential to nisin's transformation.

"They discovered that the dehydratase did two things," Nair said. "One is that it added glutamate (to the nisin peptide), and the second thing it did was it eliminated glutamate. But how does one enzyme have two different activities?"

To help answer this question, Yue Hao, a graduate student in Nair's lab, used X-ray crystallography to visualize how the dehydratase bound to the nisin peptide. She found that the enzyme interacted with the peptide in two ways: It grasped one part of the peptide and held it fast, while a different part of the dehydratase helped install the ring structures.

"There's a part of the nisin precursor peptide that is held steady, and there's a part that is flexible. And the flexible part is actually where the chemistry is carried out," Nair said.

Ortega also made another a surprising discovery: transfer-RNA, a molecule best known for its role in protein production, supplies the glutamate that allows the dehydratase to help shape the nisin into its final, active form.

"In this study, we solve a lot of questions that people have had about how dehydration works on a chemical level," van der Donk said. "And it turns out that in nature a fairly large number of natural products – many of them with therapeutic potential – are made in a similar fashion. This really is like turning on a light where it was dark before, and now we and other labs can do all kinds of things that we couldn't do previously."

###

Van der Donk is a Howard Hughes Medical Institute investigator. He and Nair also are faculty in the Institute for Genomic Biology at Illinois.

The National Institute of General Medical Sciences at the National Institutes of Health and the Ford Foundation supported this work.

To reach Satish Nair, call 217-333-0641; email snair@illinois.edu.

To reach Wilfred van der Donk, call 217-244-5360; email vddonk@illinois.edu.

The paper, "Structure and mechanism of the tRNA-dependent lantibiotic dehydratase NisB," is available online or to members of the media from the U. of I. News Bureau.

Diana Yates | Eurek Alert!
Further information:
http://illinois.edu/

Further reports about: Ortega amino amino acid glutamate antibiotic bacterial compounds enzyme glutamate microbes modifications

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>