Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team determines structure of a molecular machine that targets viral DNA for destruction

08.08.2014

With a featured publication in the Aug. 7 issue of Science, Montana State University researchers have made a significant contribution to the understanding of a new field of DNA research, with the acronym CRISPR, that holds enormous promise for fighting infectious diseases and genetic disorders.

The MSU-led research provides the first detailed blueprint of a multi-subunit "molecular machinery" that bacteria use to detect and destroy invading viruses.

"We generally think of bacteria as making us sick, but rarely do we consider what happens when the bacteria themselves get sick. Viruses that infect bacteria are the most abundant biological agents on the planet, outnumbering their bacterial hosts 10 to 1," said Blake Wiedenheft, senior author of the paper and assistant professor in MSU's Department of Microbiology and Immunology.

"Bacteria have evolved sophisticated immune systems to fend off viruses. We now have a precise molecular blueprint of a surveillance machine that is critical for viral defense," Wiedenheft said.

These immune systems rely on a repetitive piece of DNA in the bacterial genome called a CRISPR. CRISPR is an acronym that stands for Clustered Regularly Interspaced Short Palindromic Repeats. These repetitive elements maintain a molecular memory of viral infection by inserting short segments of invading viral DNA into the DNA of the "defending" bacteria. This information is then used to guide the bacteria's immune system to destroy the invading viral DNA.

The molecular blueprint of the surveillance complex was determined by a team of scientists in Wiedenheft's lab at MSU using a technique called X-ray crystallography. Ryan Jackson, a postdoctoral fellow in the Wiedenheft lab, collected X-ray diffraction data from synchrotron radiation sources located in Chicago, Berkeley, and Stanford.

"Interpreting these X-ray diffraction patterns is a complex mathematical problem and Ryan is one of a few people in the world capable of interpreting this data," Wiedenheft said.

To help determine the structure, Wiedenheft sent Jackson to Duke University for a biannual meeting on X-ray crystallography. At the meeting, Jackson sat between "two of the greatest minds in the field of X-ray crystallography"– Randy Read from the University of Cambridge and Thomas Terwilliger from Los Alamos National Lab -- whose expertise facilitated the computational analysis of the data, which was critical for determining the structure.

"The structure of this biological machine is conceptually similar to an engineer's blueprint, and it explains how each of the parts in this complex assemble into a functional complex that efficiently identifies viral DNA when it enters the cell," Wiedenheft said. "This surveillance machine consists of 12 different parts and each part of the machine has a distinct job. If we're missing one part of the machine, it doesn't work."

Understanding how these machines work is leading to unanticipated new innovations in medicine and biotechnology and agriculture. These CRISPR-associated machines are programmable nucleases (molecular scissors) that are now being exploited for precisely altering the DNA sequence of almost any cell type of interest.

"In nature these immune system evolved to protect bacteria form viruses, but we are now repurposing these systems to cut viral DNA out of human cells infected with HIV. You can think of this as a form of DNA surgery. Therapies that were unimaginable may be possible in the future," Wiedenheft said.

"We know the genetic basis for many plant, animal, and human diseases, and these CRISRP-associated nucleases are now being used in research settings to surgically remove or repair defective genes," Wiedenheft said. "This technology is revolutionizing how molecular genetics is done and MSU has a large group of researchers that are at the cutting edge of this technological development."

Wiedenheft, a native of Fort Peck, Mont., was recently recruited by MSU from UC-Berkeley. Wiedenheft explained that the research environment, colleagues and support at MSU is second to none and the opportunity to move back to this great state was a "no-brainer."

###

In addition to Jackson, Read, Terwilliger and Wiedenheft, MSU co-authors on the Science paper are research associate Sarah Golden, graduate student Paul van Erp and undergraduate Joshua Carter.

Additional collaborators included co-authors Edze Westra, Stan Brouns and John van der Oost from Wageningen University in the Netherlands.

Research in the Wiedenheft lab is supported by the National Institutes of Health, the National Science Foundation EPSCoR, the M.J. Murdock Charitable Trust, and the MSU Agricultural Experimental Station. Atomic coordinates for the Cascade structure have been deposited into the public repository (Protein Data Bank) under access code 4TVX.

Evelyn Boswell | Eurek Alert!
Further information:
http://www.montana.edu

Further reports about: CRISPR DNA Science X-ray bacteria bacterial blueprint destruction immune structure viruses

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>