Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team designs a bandage that spurs, guides blood vessel growth

16.12.2011
Researchers have developed a bandage that stimulates and directs blood vessel growth on the surface of a wound. The bandage, called a “microvascular stamp,” contains living cells that deliver growth factors to damaged tissues in a defined pattern. After a week, the pattern of the stamp “is written in blood vessels,” the researchers report.

A paper describing the new approach will appear as the January 2012 cover article of the journal Advanced Materials.

“Any kind of tissue you want to rebuild, including bone, muscle or skin, is highly vascularized,” said University of Illinois chemical and biomolecular engineering professor Hyunjoon Kong, a co-principal investigator on the study with electrical and computer engineering professor Rashid Bashir. “But one of the big challenges in recreating vascular networks is how we can control the growth and spacing of new blood vessels.”

“The ability to pattern functional blood vessels at this scale in living tissue has not been demonstrated before,” Bashir said. “We can now write features in blood vessels.”

Other laboratories have embedded growth factors in materials applied to wounds in an effort to direct blood vessel growth. The new approach is the first to incorporate live cells in a stamp. These cells release growth factors in a more sustained, targeted manner than other methods, Kong said.

The stamp is nearly 1 centimeter across and is built of layers of a hydrogel made of polyethylene glycol (an FDA-approved polymer used in laxatives and pharmaceuticals) and methacrylic alginate (an edible, Jell-O-like material).

The stamp is porous, allowing small molecules to leak through, and contains channels of various sizes to direct the flow of larger molecules, such as growth factors.

The researchers tested the stamp on the surface of a chicken embryo. After a week the stamp was removed, revealing a network of new blood vessels that mirrored the pattern of the channels in the stamp.

“This is a first demonstration that the blood vessels are controlled by the biomaterials,” Kong said.

The researchers see many potential applications for the new stamp, from directing the growth of blood vessels around a blocked artery, to increasing the vascularization of tissues with poor blood flow, to “normalizing” blood vessels that feed a tumor to improve the delivery of anti-cancer drugs. Enhancing the growth of new blood vessels in a coordinated pattern after surgery may also reduce recovery time and lessen the amount of scar tissue, the researchers said.

In another study published earlier this year, the team developed a biodegradable material that supports living cells. Future research will test whether the new material also can be used a stamp.

Researchers on the study team also included K. Jimmy Hsia, a professor of mechanical science and engineering and of bioengineering at Illinois; postdoctoral researchers Jae Hyun Jeong and Pinar Zorlutuna; and graduate students Vincent Chan, Chaenyung Cha and Casey Dyck.

This study was supported in part by the National Science Foundation Emergent Behaviors of Integrated Cellular Systems Center at Illinois, Georgia Institute of Technology and Massachusetts Institute of Technology; the U.S. Army Telemedicine & Advanced Technology Research Center; an NSF Career grant; the American Heart Association; and the Amore Pacific Corp.

Bashir, the Abel Bliss Professor of Engineering, also is a professor of bioengineering. He and Kong are affiliates of the Micro and Nanotechnology Lab and the Institute for Genomic Biology at Illinois.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Lobachevsky University

nachricht How the intestinal fungus Candida albicans shapes our immune system
22.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>