Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New target isolated for leukemia drug development

12.02.2014
Protein plays previously unknown role in AML development

There are potentially effective treatments for acute myeloid leukemia (AML), but they only work in 20 to 40 percent of cases. In a paper published today in Leukemia, a Nature journal, a UT Health Science Center researcher has pinpointed a protein that could play a key, previously unknown role in the development of pediatric AML — promising new information in the quest to treat and cure childhood leukemias.

AML starts at the point when cells mature into different kinds of blood cells. In AML, the cancerous cells grow and proliferate in an abnormal way, and they fail to develop, or differentiate, into normal functioning white blood cells. Also, high levels of a protein called WTAP contribute to abnormal cell behavior, observed Sanjay Bansal, Ph.D., a researcher at the Greehey Children's Cancer Research Center at The University of Texas Health Science Center at San Antonio.

Dr. Bansal and his team, working with leukemia cells, used a laboratory technique to "knock down" WTAP expression in AML cells. What resulted was, in the research world, a resounding success.

"Knocking down this protein, WTAP, greatly suppressed proliferation and induced differentiation," said Hima Bansal, Ph.D., senior research associate at the Health Science Center and lead author of the paper. "It took care of both problems."

But they needed to understand how WTAP levels get so high in AML in the first place.

The researchers turned to another protein called Hsp90, a so-called "molecular chaperone" that helps stabilize more than 200 other proteins, known as Hsp90 "clients".

"When we suppressed Hsp90, we reduced WTAP," Dr. Bansal said. "So we have discovered two things: WTAP's role in AML and the mechanism underlying its overexpression."

Many of Hsp90's other client proteins are known targets in oncology, and "WTAP joins the list," Dr. Bansal said.

This discovery could open the door to more effective therapies for children and adults with newly diagnosed AML or for patients who have failed currently available treatments.

For current news from the UT Health Science Center, please visit our news release website or follow us on Twitter @uthscsa.

The Cancer Therapy & Research Center (CTRC) at The University of Texas Health Science Center at San Antonio is one of the elite academic cancer centers in the country to be named a National Cancer Institute (NCI) Designated Cancer Center, and is one of only four in Texas. A leader in developing new drugs to treat cancer, the CTRC Institute for Drug Development (IDD) conducts one of the largest oncology Phase I clinical drug programs in the world, and participates in development of cancer drugs approved by the U.S. Food & Drug Administration.

Elizabeth Allen | EurekAlert!
Further information:
http://www.ctrc.net
http://www.uthscsa.edu

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>