Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking screening methods to the next level

17.10.2017

CRISPR-UMI, a novel method developed at IMBA, facilitates extremely robust and sensitive screens by tracking single mutants within a population of cells.

“The whole is greater than the sum of its parts” is an adage that applies to many concepts in biology. For genetic screens, however, it is the individual parts, i.e. the individual cells, that are the focus of the next generation of CRISPR-Cas9 screens. Single mutants within a population reveal new findings that could revolutionise target discovery and offer fresh insights into the biological systems of cell differentiation and cancer.


CRISPR-UMI relies on the addition of a high complexity barcoding system – or Unique Molecular Identifier (UMI) – that marks each single mutant clone and allows its tracking within a population.

(c)Philipp Zaufel, maximcapra.com

In recent years, different labs have been working on improving CRISPR screening technology by optimising guide efficiency, on-target specifity and Cas9 variants. But so far, no one has been able to address the concern of cellular heterogeneity, which affects the precision of screening results. The Elling Lab has now overcome this limitation.

As reported in the current issue of Nature Methods, the lab developed a new screening paradigm that allows scientists to track individual mutant cells within a screen. This breakthrough enables the detection of outliers within populations that would otherwise lead to incorrect conclusions and moreover can focus on the fraction of cells displaying a phenotype presumably due to homozygous mutation of genes by CRISPR/Cas9.

It also allows to quantify the phenotype independent on the technological aspect of how efficient knockout cells are generated. The innovative method relies on the addition of a high complexity barcoding system – or Unique Molecular Identifier (UMI) – that uniquely marks each mutant clone within a population.

“Instead of examining a pool of cells with variable genetic status, we can now look at hundreds of independent single cells derived clones separately. This method made it possible to reliable ascertain new drug targets for cancer therapy”, said Georg Michlits, first author.

Biological events with low probability, such as reprogramming a fibroblast to a stem cell or the formation of metastasis, can be considered to be stochastic events. A conventional screen is sensitive to the size of the event (large stem cell colony or large metastasis), but fails to assess the probability (regulation) of the event itself that is reflected in number versus size. Using CRISPR-UMI, Elling’s lab screened for genes that inhibit the reprogramming of differentiated cells to pluripotency.

“We were able to directly quantify the number and size of independent iPS cell colonies that appeared in the screen, revealing whether the selected genes regulate speed or likelihood of the switch to pluripotency. CRISPR-UMI therefore enabled a direct biological interpretation of screening results”, said Ulrich Elling, group leader at IMBA.

Original Publication: Michlits et al., 'CRISPR-UMI: single-cell lineage tracing of pooled CRISPR–Cas9 screens', Nature Methods, 2017, doi.10.1038/nmeth.4466

About IMBA
IMBA - Institute of Molecular Biotechnology is one of the leading biomedical research institutes in Europe focusing on cutting-edge functional genomics and stem cell technologies. IMBA is located at the Vienna Biocenter, the vibrant cluster of universities, research institutes and biotech companies in Austria. IMBA is a basic research institute of the Austrian Academy of Sciences, the leading national sponsor of non-university academic research. www.imba.oeaw.ac.at

About the Vienna BioCenter
The Vienna BioCenter (VBC) is a leading life sciences location in Europe, offering an extraordinary combination of research, education and business on a single campus. About 1,700 employees, more than 1,300 students, 88 research groups, 18 biotech companies, and scientists from more than 69 nations create a highly dynamic environment. This research was part of the VBC PhD Programme. www.viennabiocenter.org

Weitere Informationen:

http://www.imba.oeaw.ac.at/research-highlights/taking-screening-methods-to-the-n...

Mag. Evelyn Devuyst | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Good preparation is half the digestion
15.11.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht How the gut ‘talks’ to brown fat
16.11.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>