Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Systems Biology of Antibiotics


Bacteria can quickly become resistant to antibiotics. Which mechanisms are responsible for this and how to counteract it? Dr. Ana Rita Brochado, who is setting up a new Emmy Noether Junior Research Group at the University of Würzburg, is investigating this.

Bacteria have fascinating properties. They adapt excellently to their respective environment, and they existed long before humans. Their toughness has led to the fact that bacteria have successfully spread all over the world for three billion years – even in places where humans could not survive, for example in the hottest springs and in the coldest places on earth.

Dr. Ana Rita Brochado investigates the effect of antibiotics on bacteria.

Bild: Jörg Fuchs / Universität Würzburg

However, they were only discovered a few hundred years ago. Since that time, research has been examining these tiny creatures more and more closely.

Biotechnology engineer Dr. Ana Rita Brochado has also taken a liking to microbes. She has been setting up an Emmy Noether Junior Research Group at the Biocenter of Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany, since early 2019. Her topic: "Systems Biology of Antibiotics in Gram-negatives."

Dr. Brochado is funded by the JMU Biocenter Nachwuchsprogramm, by the ZINF Young Investigator program and by the German Research Foundation (DFG). The Emmy Noether Programme by DFG offers outstanding young researchers the opportunity to lead junior research groups on their own responsibility and thus qualify for a professorship. The DFG will provide Brochado with up to 1,82 million euros for her group.

Gram-negative bacteria at a glance

Dr. Brochado is interested in bacterial pathogens. "Bacteria are very small but extremely tough creatures. They use complex mechanisms to cope with their environmental conditions," said the researcher. This can lead to problems if they infect humans. "Mutations can quickly make bacteria resistant to antibiotics that will no longer work," she explains. "The weapons with which medicine fights bacterial infections quickly become dull. New strategies are permanently in demand.”

Her research focuses particularly on gram-negative bacteria. These are infectious agents which are particularly difficult to treat, due to the complex structure of their cellular envelope: in addition to the cell wall, they have an external biomembrane that makes them very resistant to external compounds, such as antibiotics.

Reviving old antibiotics with vanilla against pathogens

Ana Rita Brochado and her group are investigating the molecular mechanisms underlying antibiotic activity using a systems biology approach. "It is not the case that bacteria simply die when they come into contact with an antibiotic," she explains, "in this process numerous mechanisms are set in motion. We will use different compounds alone and in combination to better understand the complexity of the bacterial response to these compounds.”

Among other things, the scientist showed that different bacteria react in a very specific manner to antibiotic combinations, and also that food compounds can be used to enhance the activity of antibiotics against resistant bacteria. For instance, particular clinical isolates of Escherichia coli which are resistant to the antibiotic spectinomycin could be successfully combated by combining the antibiotic with the aroma substance vanillin (Brochado et al., Nature, 2018). Vanillin is the major component of vanilla flavor.

Career of the junior research group leader

Ana Rita Brochado has completed several research stations in Europe. She obtained her Master's degree in Biotechnology Engineering in her native Portugal at the Instituto Superior Técnico in Lisbon. She received her PhD from the Technical University of Denmark in Lyngby in 2012 with a thesis modelling of yeast metabolism.

She then moved to Germany, where she did postdoctoral research at the group of Dr. Athanasios Typas at the European Molecular Biology Laboratory (EMBL) in Heidelberg until the end of 2018. During her postdoc, she became interested in antibiotic action and developed high-throughput approaches to study antibiotic combinations in bacteria.

Ana Rita Brochado moved from EMBL to JMU Würzburg at the beginning of 2019. Here she is setting up her Emmy Noether Junior Research Group at the Chair of Microbiology at the Biocenter. She does not only want to cooperate with Professor Thomas Rudel, who holds the chair, but also with other groups: "I am particularly interested in quantitative biology and biology of infection. Thanks to its well-connected research landscape, JMU offers me the best conditions to carry out combined basic research in these fields.”

But that's not all. "Of course, we want to make our findings useful for patient care," said Brochado. "To do this, many research teams have to work together to successfully transfer research results from the laboratory into clinical studies. I see excellent opportunities for this in Würzburg."

Long research tradition in Würzburg

She is not alone with this assessment. Würzburg has a long and successful tradition in the research of bacteria. As early as 1880, the physician Theodor Escherich discovered a bacterium in the human intestine in Würzburg that was named after him – Escherichia coli.

Even today, Würzburg is an outstanding supra-regional location for bacterial research. Founded in 1993, the ZINF Research Center for Infectious Diseases of JMU – which Ana Rita Brochado is also a member as a Young Investigator – is the oldest university institution in Germany dedicated to the interdisciplinary and cross-faculty research of infectious diseases. The Helmholtz Institute for RNA-based Infection Research, founded in 2017, is also of particular importance. The subsidiary institute of the Braunschweig Helmholtz Centre – Germany's largest institution for infection research – works and conducts research within the framework of a strategic partnership with the JMU.

Wissenschaftliche Ansprechpartner:

Dr. Ana Rita Brochado, Chair of Microbiology, Biocenter, University of Würzburg, T +49 931 31-88860,

Weitere Informationen: Website Dr. Brochado “Combining antibiotics changes their effectiveness”: EMBL press release about the publication in Nature

Robert Emmerich | Julius-Maximilians-Universität Würzburg

Further reports about: Biocenter Biotechnology DFG EMBL Escherichia coli antibiotic bacteria

More articles from Life Sciences:

nachricht A human liver cell atlas
15.07.2019 | Max Planck Institute of Immunobiology and Epigenetics

nachricht Researchers reveal mechanisms for regulating temperature sensitivity of soil organic matter decompos
15.07.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

Latest News

A human liver cell atlas

15.07.2019 | Life Sciences

No more trial-and-error when choosing an electrolyte for metal-air batteries

15.07.2019 | Power and Electrical Engineering

Possibilities of the biosimilar principle of learning are shown for a memristor-based neural network

15.07.2019 | Life Sciences

Science & Research
Overview of more VideoLinks >>>