Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Systems Biology of Antibiotics

24.05.2019

Bacteria can quickly become resistant to antibiotics. Which mechanisms are responsible for this and how to counteract it? Dr. Ana Rita Brochado, who is setting up a new Emmy Noether Junior Research Group at the University of Würzburg, is investigating this.

Bacteria have fascinating properties. They adapt excellently to their respective environment, and they existed long before humans. Their toughness has led to the fact that bacteria have successfully spread all over the world for three billion years – even in places where humans could not survive, for example in the hottest springs and in the coldest places on earth.


Dr. Ana Rita Brochado investigates the effect of antibiotics on bacteria.

Bild: Jörg Fuchs / Universität Würzburg

However, they were only discovered a few hundred years ago. Since that time, research has been examining these tiny creatures more and more closely.

Biotechnology engineer Dr. Ana Rita Brochado has also taken a liking to microbes. She has been setting up an Emmy Noether Junior Research Group at the Biocenter of Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany, since early 2019. Her topic: "Systems Biology of Antibiotics in Gram-negatives."

Dr. Brochado is funded by the JMU Biocenter Nachwuchsprogramm, by the ZINF Young Investigator program and by the German Research Foundation (DFG). The Emmy Noether Programme by DFG offers outstanding young researchers the opportunity to lead junior research groups on their own responsibility and thus qualify for a professorship. The DFG will provide Brochado with up to 1,82 million euros for her group.

Gram-negative bacteria at a glance

Dr. Brochado is interested in bacterial pathogens. "Bacteria are very small but extremely tough creatures. They use complex mechanisms to cope with their environmental conditions," said the researcher. This can lead to problems if they infect humans. "Mutations can quickly make bacteria resistant to antibiotics that will no longer work," she explains. "The weapons with which medicine fights bacterial infections quickly become dull. New strategies are permanently in demand.”

Her research focuses particularly on gram-negative bacteria. These are infectious agents which are particularly difficult to treat, due to the complex structure of their cellular envelope: in addition to the cell wall, they have an external biomembrane that makes them very resistant to external compounds, such as antibiotics.

Reviving old antibiotics with vanilla against pathogens

Ana Rita Brochado and her group are investigating the molecular mechanisms underlying antibiotic activity using a systems biology approach. "It is not the case that bacteria simply die when they come into contact with an antibiotic," she explains, "in this process numerous mechanisms are set in motion. We will use different compounds alone and in combination to better understand the complexity of the bacterial response to these compounds.”

Among other things, the scientist showed that different bacteria react in a very specific manner to antibiotic combinations, and also that food compounds can be used to enhance the activity of antibiotics against resistant bacteria. For instance, particular clinical isolates of Escherichia coli which are resistant to the antibiotic spectinomycin could be successfully combated by combining the antibiotic with the aroma substance vanillin (Brochado et al., Nature, 2018). Vanillin is the major component of vanilla flavor.

Career of the junior research group leader

Ana Rita Brochado has completed several research stations in Europe. She obtained her Master's degree in Biotechnology Engineering in her native Portugal at the Instituto Superior Técnico in Lisbon. She received her PhD from the Technical University of Denmark in Lyngby in 2012 with a thesis modelling of yeast metabolism.

She then moved to Germany, where she did postdoctoral research at the group of Dr. Athanasios Typas at the European Molecular Biology Laboratory (EMBL) in Heidelberg until the end of 2018. During her postdoc, she became interested in antibiotic action and developed high-throughput approaches to study antibiotic combinations in bacteria.

Ana Rita Brochado moved from EMBL to JMU Würzburg at the beginning of 2019. Here she is setting up her Emmy Noether Junior Research Group at the Chair of Microbiology at the Biocenter. She does not only want to cooperate with Professor Thomas Rudel, who holds the chair, but also with other groups: "I am particularly interested in quantitative biology and biology of infection. Thanks to its well-connected research landscape, JMU offers me the best conditions to carry out combined basic research in these fields.”

But that's not all. "Of course, we want to make our findings useful for patient care," said Brochado. "To do this, many research teams have to work together to successfully transfer research results from the laboratory into clinical studies. I see excellent opportunities for this in Würzburg."

Long research tradition in Würzburg

She is not alone with this assessment. Würzburg has a long and successful tradition in the research of bacteria. As early as 1880, the physician Theodor Escherich discovered a bacterium in the human intestine in Würzburg that was named after him – Escherichia coli.

Even today, Würzburg is an outstanding supra-regional location for bacterial research. Founded in 1993, the ZINF Research Center for Infectious Diseases of JMU – which Ana Rita Brochado is also a member as a Young Investigator – is the oldest university institution in Germany dedicated to the interdisciplinary and cross-faculty research of infectious diseases. The Helmholtz Institute for RNA-based Infection Research, founded in 2017, is also of particular importance. The subsidiary institute of the Braunschweig Helmholtz Centre – Germany's largest institution for infection research – works and conducts research within the framework of a strategic partnership with the JMU.

Wissenschaftliche Ansprechpartner:

Dr. Ana Rita Brochado, Chair of Microbiology, Biocenter, University of Würzburg, T +49 931 31-88860, anarita.brochado@uni-wuerzburg.de

Weitere Informationen:

https://www.biozentrum.uni-wuerzburg.de/mikrobio/mitarbeiter/dr-ana-rita-brochad... Website Dr. Brochado

https://www.eurekalert.org/pub_releases/2018-07/embl-cac070218.php “Combining antibiotics changes their effectiveness”: EMBL press release about the publication in Nature

Robert Emmerich | Julius-Maximilians-Universität Würzburg

Further reports about: Biocenter Biotechnology DFG EMBL Escherichia coli antibiotic bacteria

More articles from Life Sciences:

nachricht The hidden structure of the periodic system
17.06.2019 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>