Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Synthetic Molecules Treat Autoimmune Disease in Mice

29.12.2011
A team of Weizmann Institute scientists has turned the tables on an autoimmune disease. In such diseases, including Crohn’s and rheumatoid arthritis, the immune system mistakenly attacks the body’s tissues. But the scientists managed to trick the immune systems of mice into targeting one of the body’s players in autoimmune processes, an enzyme known as MMP9. The results of their research appear today in Nature Medicine.

Prof. Irit Sagi of the Biological Regulation Department and her research group have spent years looking for ways to home in on and block members of the matrix metalloproteinase (MMP) enzyme family. These proteins cut through such support materials in our bodies as collagen, which makes them crucial for cellular mobilization, proliferation and wound healing, among other things. But when some members of the family, especially MMP9, get out of control, they can aid and abet autoimmune disease and cancer metastasis. Blocking these proteins might lead to effective treatments for a number of diseases.

Originally, Sagi and others had designed synthetic drug molecules to directly target MMPs. But these drugs proved to be fairly crude tools that had extremely severe side effects. The body normally produces its own MMP inhibitors, known as TIMPs, as part of the tight regulation program that keeps these enzymes in line. As opposed to the synthetic drugs, these work in a highly selective manner. An arm on each TIMP is precisely constructed to reach into a cleft in the enzyme that shelters the active bit – a metal zinc ion surrounded by three histidine peptides – closing it off like a snug cork. ‘Unfortunately,’ says Sagi, ‘it is quite difficult to reproduce this precision synthetically.’

Dr. Netta Sela-Passwell began working on an alternative approach as an M.Sc. student in Sagi’s lab, and continued on through her Ph.D. research. She and Sagi decided that, rather than attempting to design a synthetic molecule to directly attack MMPs, they would try trick the immune system to create natural antibodies that target MMP-9 through immunization. Just as immunization with a killed virus induces the immune system to create antibodies that then attack live viruses, an MMP immunization would trick the body into creating antibodies that block the enzyme at its active site.

Together with Prof. Abraham Shanzer of the Organic Chemistry Department, they created an artificial version of the metal zinc-histidine complex at the heart of the MMP9 active site. They then injected these small, synthetic molecules into mice and afterward checked the mice’s blood for signs of immune activity against the MMPs. The antibodies they found, which they dubbed ‘metallobodies,’ were similar but not identical to TIMPS, and a detailed analysis of their atomic structure suggested they work in a similar way – reaching into the enzyme’s cleft and blocking the active site. The metallobodies were selective for just two members of the MMP family – MMP2 and 9 – and they bound tightly to both the mouse versions of these enzymes and the human ones.

As they hoped, when they had induced an inflammatory condition that mimics Crohn's disease in mice, the symptoms were prevented when mice were treated with metallobodies. ‘We are excited not only by the potential of this method to treat Crohn’s,’ says Sagi, but by the potential of using this approach to explore novel treatments for many other diseases.’ Yeda, the technology transfer arm of the Weizmann Institute has applied for a patent for the synthetic immunization molecules as well as the generated metallobodies.

Also participating in this research were Drs. Orly Dym, Haim Rozenberg, Raanan Margalit, Rina Arad-Yellin and Tsipi Shoham of the Structural Biology, Immunology and Biological Regulation Departments, Raghavendra Kikkeri of the Organic Chemistry Department, Miriam Eisenstein of the Chemical Research Support Department, Ori Brenner of the Veterinary Resources Department and Tamar Danon of the Molecular Cell Biology Department.

Prof. Irit Sagi’s research is supported by the Spencer Charitable Fund; the Leona M. and Harry B. Helmsley Charitable Trust; Cynthia Adelson, Canada; Mireille Steinberg, Canada; the Leonard and Carol Berall Post Doctoral Fellowship; and the Ilse Katz Institute for Material Sciences and Magnetic Resonance Research. Prof. Sagi is the incumbent of the Maurizio Pontecorvo Professorial Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,700 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il/, and are also available at http://www.eurekalert.org/

Yivsam Azgad | idw
Further information:
http://wis-wander.weizmann.ac.il
http://www.nature.com/nm/journal/vaop/ncurrent/full/nm.2582.html

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>