Synthetic lethality: A new way to kill cancer cells

Susan Bates and Christina Annunziata looked at several recent papers on this form of treatment, which takes advantage of the synthetic lethality of BRCA (breast cancer susceptibility genes) and poly-ADP ribose polymerase (PARP) proteins to attack cancerous cells whilst sparing healthy ones.

BRCA and PARP are two key players in DNA repair and have different but complementary functions in the cell. Loss of the BRCA protein still allows the cell to survive but greatly increases its chances of becoming cancerous through the accumulation of mutations. The loss of both proteins, however, kills the cell in a process called synthetic lethality.

Researchers, by using drugs to block the activity of PARP in cells missing BRCA, such as those found in certain breast and ovarian cancers, can help spare healthy, non-cancerous cells because they have functional BRCA and are not affected by the loss of PARP. Thus, only cancer cells without functional BRCA protein are killed by drugs that inhibit PARP.

Recent clinical trials have shown that cancers caused by mutations that knock out BRCA activity can be controlled by blocking PARP activity with specific drugs. Patients were treated with traditional anticancer drugs alone or in combination with one of two new PARP inhibitors, olaparib or BSI-201.

Bates notes that patients on combination therapy had improved “[disease] progression-free survival, and overall survival” as compared to patients treated with traditional drugs alone.

Bates is optimistic about the promise of combining PARP inhibitors with existing cancer drugs. She says that the results of these clinical trials “have provided proof of principle in achieving synthetic lethality” with PARP-inhibiting drugs and that treatments combining novel PARP inhibitors with traditional chemotherapeutic drugs have the potential to vanquish BRCA-associated breast and ovarian cancers.

1. Synthetic lethality is a concept in which blocking the activity of two proteins leads to cell death, but inhibition of either alone does not

2. Susan Bates, Faculty Member for Faculty of 1000 Biology, is the head of Molecular Therapeutics Section at the National Cancer Institute in Bethesda, Maryland http://f1000biology.com/about/biography/1203890420334349

3. The full text of this article is available for subscribers at http://f1000biology.com/reports/10.3410/B2-10/ or for reporters at http://faculty1000.files.wordpress.com/2010/02/bates-report.pdf

4. F1000 Biology Reports (ISSN 1757-594X) publishes short commentaries by the world's top scientists in which the hottest biology papers/clusters of papers identified by Faculty of 1000 are put into a broader context http://f1000biology.com/reports

5. Faculty of 1000 Biology, http://f1000biology.com, is a unique online service that helps scientists stay informed. Its distinguished international faculty of over 5000 top researchers elect, evaluate and provide opinion on key articles across the life sciences, creating an authoritative guide to the literature that matters

6. Please contact Steve Pogonowski, PR Manager, for a complimentary journalist subscription to Faculty of 1000 – press@f1000.com

Media Contact
Steve Pogonowski
Public Relations Manager
Faculty of 1000
press@f1000.com
http://blog.f1000.com
http://twitter.com/f1000
http://youtube.com/Facultyof1000

Media Contact

Steve Pogonowski EurekAlert!

More Information:

http://www.f1000.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors