Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What are the causes of synapse failure in Alzheimer's disease?

29.02.2012
Prof. Jochen Herms heads a new research group at the German Center for Neurodegenerative Diseases (DZNE) and holds a professorship at the Ludwig-Maximilians-Universität in Munich. He studies the cellular basis of neurodegenerative diseases with advanced microscopy technologies.

The degeneration of synapses – the contact sites between nerve cells – is considered to be the main cause of neurodegenerative diseases like Alzheimer's, Parkinson's or prion diseases. As head of a new research group at the German Center for Neurodegenerative Diseases (DZNE), Professor Jochen Herms investigates why synapses degenerate and what can be done to impede the process. Herms also holds the chair "Translational Research in the Field of Neurodegeneration" at the Ludwig-Maximilians-Universität in Munich.

What are the proteins involved in the degradation of synapses? Which cellular changes take place and which drugs may counteract the degenerative process? To answer these questions Herms and his colleagues have specialized on long-term in vivo two-photon microscopy. This method makes it possible to monitor structural changes at synapses in the mouse brain for a period of weeks or months. "This is much more sensitive than observing the behavior of animals. In addition, drawing a parallel to the human diseases is far more straight forward, at least if one assumes synaptic failure as primary cause of neurodegenerative diseases," says Herms.

Recently Herms made the headlines with an approach to developing a new method for early detection and therapy control of Alzheimer's disease. This method aims to detect tau aggregates – protein structures that accumulate in the central nervous system in Alzheimer's disease – in the retina of the eye. Currently, the researchers are still testing the method in animal models. But if the process turns out to be applicable to humans it would be possible to develop new diagnostic tools for Alzheimer’s disease. "Early diagnosis of Alzheimer's is very important because the disease begins long before the first symptoms appear. An effective therapy against Alzheimer's disease has not yet been established and this can most likely be attributed to the fact that in previous clinical studies, therapy started too late," Herms explains.

Herms is very enthusiastic about his appointment with DZNE. "We will only advance in Alzheimer research if we critically bring into question common assumptions and develop new hypotheses. The strong support we receive at DZNE and the critical mass of scientists at DZNE provide us with the right environment required to achieve this goal," he says. At the DZNE, Herms will focus entirely on doing basic research. In this undertaking, he will strongly profit from his medical background and profound knowledge in neuropathology: "Having a clear picture of the disease in humans helps a lot to better assess the relevance of certain observations in animal models," says Herms.

Jochen Herms studied medicine, received his MD from the University Medical Center Hamburg-Eppendorf and then worked at the Max Planck Institute for Biophysical Chemistry in Göttingen in the lab of Otto Creutzfeldt. Afterwards he specialized in neuropathology at the University Göttingen and completed his habilitation on the function of the prion protein in neurons in 1999. Since 2001 he has been professor of neuropathology at the Ludwig-Maximilians-Universität in Munich (LMU), where he was appointed Chair of Translational Research in the Field of Neurodegeneration and joined DZNE in 2011.

Contact information:
Prof. Dr. Jochen Herms
German Center for Neurodegenerative Diseases (DZNE)
Ludwig-Maximilians-Universität Munich
Centre for Neuropathology
Feodor-Lynen Str. 23
81377 Munich
Email: jochen.herms(at)dzne.de
Tel.: +49 (0) 89 / 2180-78010
Daniel Bayer
German Center for Neurodegenerative Diseases (DZNE)
Press- and Public Relations
Email: daniel.bayer(at)dzne.de
Tel: +49 (0) 228 43302 /261

Daniel Bayer | idw
Further information:
http://bit.ly/herms_group
http://www.dzne.de

More articles from Life Sciences:

nachricht Joining forces for immune research
13.08.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht The “TRiC” to folding actin
10.08.2018 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>