Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What are the causes of synapse failure in Alzheimer's disease?

29.02.2012
Prof. Jochen Herms heads a new research group at the German Center for Neurodegenerative Diseases (DZNE) and holds a professorship at the Ludwig-Maximilians-Universität in Munich. He studies the cellular basis of neurodegenerative diseases with advanced microscopy technologies.

The degeneration of synapses – the contact sites between nerve cells – is considered to be the main cause of neurodegenerative diseases like Alzheimer's, Parkinson's or prion diseases. As head of a new research group at the German Center for Neurodegenerative Diseases (DZNE), Professor Jochen Herms investigates why synapses degenerate and what can be done to impede the process. Herms also holds the chair "Translational Research in the Field of Neurodegeneration" at the Ludwig-Maximilians-Universität in Munich.

What are the proteins involved in the degradation of synapses? Which cellular changes take place and which drugs may counteract the degenerative process? To answer these questions Herms and his colleagues have specialized on long-term in vivo two-photon microscopy. This method makes it possible to monitor structural changes at synapses in the mouse brain for a period of weeks or months. "This is much more sensitive than observing the behavior of animals. In addition, drawing a parallel to the human diseases is far more straight forward, at least if one assumes synaptic failure as primary cause of neurodegenerative diseases," says Herms.

Recently Herms made the headlines with an approach to developing a new method for early detection and therapy control of Alzheimer's disease. This method aims to detect tau aggregates – protein structures that accumulate in the central nervous system in Alzheimer's disease – in the retina of the eye. Currently, the researchers are still testing the method in animal models. But if the process turns out to be applicable to humans it would be possible to develop new diagnostic tools for Alzheimer’s disease. "Early diagnosis of Alzheimer's is very important because the disease begins long before the first symptoms appear. An effective therapy against Alzheimer's disease has not yet been established and this can most likely be attributed to the fact that in previous clinical studies, therapy started too late," Herms explains.

Herms is very enthusiastic about his appointment with DZNE. "We will only advance in Alzheimer research if we critically bring into question common assumptions and develop new hypotheses. The strong support we receive at DZNE and the critical mass of scientists at DZNE provide us with the right environment required to achieve this goal," he says. At the DZNE, Herms will focus entirely on doing basic research. In this undertaking, he will strongly profit from his medical background and profound knowledge in neuropathology: "Having a clear picture of the disease in humans helps a lot to better assess the relevance of certain observations in animal models," says Herms.

Jochen Herms studied medicine, received his MD from the University Medical Center Hamburg-Eppendorf and then worked at the Max Planck Institute for Biophysical Chemistry in Göttingen in the lab of Otto Creutzfeldt. Afterwards he specialized in neuropathology at the University Göttingen and completed his habilitation on the function of the prion protein in neurons in 1999. Since 2001 he has been professor of neuropathology at the Ludwig-Maximilians-Universität in Munich (LMU), where he was appointed Chair of Translational Research in the Field of Neurodegeneration and joined DZNE in 2011.

Contact information:
Prof. Dr. Jochen Herms
German Center for Neurodegenerative Diseases (DZNE)
Ludwig-Maximilians-Universität Munich
Centre for Neuropathology
Feodor-Lynen Str. 23
81377 Munich
Email: jochen.herms(at)dzne.de
Tel.: +49 (0) 89 / 2180-78010
Daniel Bayer
German Center for Neurodegenerative Diseases (DZNE)
Press- and Public Relations
Email: daniel.bayer(at)dzne.de
Tel: +49 (0) 228 43302 /261

Daniel Bayer | idw
Further information:
http://bit.ly/herms_group
http://www.dzne.de

More articles from Life Sciences:

nachricht Dissolving protein traffic jam at the entrance of mitochondria
23.05.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Producing tissue and organs through lithography
23.05.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>