Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Symbiotic upcycling: Turning “low value” compounds into biomass

25.06.2019

Scientists discover the first known sulfur-oxidizing symbiont to be entirely heterotrophic.

Kentron, a bacterial symbiont of ciliates, turns cellular waste products into biomass. It is the first known sulfur-oxidizing symbiont to be entirely heterotrophic. Researchers from the Max Planck Institute for Marine Microbiology now report about this unexpected bacterium that turns waste into food.


Sampling for Kentrophoros in Elba, Italy and Nivå, Denmark

Brandon Seah (left), Silke Wetzel (right) / Max Planck Institute for Marine Microbiology


Kentrophoros consists of a single huge cell, carries millions of symbionts and harvests them as food. Half of the biomass visible in this picture consists of bacteria.

Brandon Seah/Max Planck Institute for Marine Microbiology

Plants use light energy from the sun for photosynthesis to turn carbon dioxide (CO2) into biomass. Animals can’t do that. Therefore, some of them have teamed up with bacteria that carry out a process called chemosynthesis. It works almost like photosynthesis, only that it uses chemical energy instead of light energy.

Many animals rely on chemosynthetic bacteria to supply them with food. The symbionts turn CO2 into biomass and are subsequently digested by their host. Kentron, a bacterium nourishing the ciliate Kentrophoros, was thought to be ‘just another’ chemosynthetic symbiont. However, recent results indicate that it is not.

Turning waste into food

An international team led by scientists from the Max Planck Institute for Marine Microbiology sequenced the genome of Kentron, the sulfur-oxidizing symbiont of the ciliates. “Contrary to our expectations, we couldn’t find any of the known genes for the fixation of CO2,” reports first author Brandon Seah.

Without being able to fix CO2, what does Kentron grow on? “From their genes, it seems that Kentron uses small organic compounds and turns those into biomass,” Nicole Dubilier, director at the Max Planck Institute for Marine Microbiology and senior author of the study, explains.

These include compounds such as acetate or propionate, which are typical ‘low value’ cellular waste products. “In this sense, Kentron is upcycling the garbage. It most probably recycles waste products from the environment and from their hosts into ‘higher value’ biomass to feed their hosts.”

Underpinning genetic analyses with isotope fingerprinting

Kentrophoros is a thin, ribbon-like ciliate that lives in sandy marine sediments, where it can easily squeeze and move between sand particles. It almost entirely relies on its symbionts for nutrition and has even given up its own mouth. Seah, who now works at the Max Planck Institute for Developmental Biology in Tübingen, and his colleagues collected specimens at sites in the Mediterranean, Caribbean and Baltic Seas.

However, Kentrophoros does not grow and reproduce in the lab. So how could the researchers investigate Kentron’s food preferences? “Our collaborators in Calgary and North Carolina have developed a way to estimate the stable isotope fingerprint of proteins from the tiny samples that we have,” Seah explains.

This fingerprint tells a lot about the source of carbon an organism uses. The Kentron bacteria have a fingerprint that is completely unlike any other chemosynthetic symbiont’s fingerprint from similar habitats. “This clearly shows that Kentron is getting its carbon differently than other symbionts.”

Textbook knowledge put to the test

This research provides a counterexample to textbook descriptions. These usually say that the symbiotic bacteria make most of their biomass from either CO2 or methane. In contrast, Kentron does not appear to have this ability to make biomass from scratch.

“Uptake of organic substrates from the environment and recycling waste from their hosts might play a bigger role in these symbioses than previously thought,” senior author Harald Gruber-Vodicka from the Max Planck Institute for Marine Microbiology concludes. “This has implications in ecological models of carbon cycling in the environment, and we are excited to look further into the details and pros and cons of either strategy.”

Wissenschaftliche Ansprechpartner:

Dr. Brandon K. B. Seah
Max Planck Institute for Marine Microbiology, Bremen, Germany
Current address: Max Planck Institute for Developmental Biology, Tübingen, Germany
E-Mail: kbseah@mpi-bremen.de

Dr. Harald Gruber-Vodicka
Department of Symbiosis
Max Planck Institute for Marine Microbiology, Bremen, Germany
Phone: +49 421 2028-760
E-Mail: hgruber@mpi-bremen.de

Prof. Dr. Nicole Dubilier
Department of Symbiosis
Max Planck Institute for Marine Microbiology, Bremen, Germany
Phone: +49 421 2028-932
E-Mail: ndubilie@mpi-bremen.de

Dr. Fanni Aspetsberger
Press Officer
Max Planck Institute for Marine Microbiology,
Bremen, Germany
Phone: +49 421 2028-947
E-Mail: faspetsb@mpi-bremen.de

Originalpublikation:

Brandon K. B. Seah, Chakkiath Paul Anthony, Bruno Huettel, Jan Zarzycki, Lennart Schada von Borzyskowski, Tobias J. Erb, Angela Kouris, Manuel Kleiner, Manuel Liebeke, Nicole Dubilier, Harald R. Gruber-Vodicka: Sulfur-oxidizing symbionts without canonical genes for autotrophic CO2 fixation. mBio. DOI: 10.1128/mBio.01112-19

Weitere Informationen:

https://www.mpi-bremen.de/en/Page3639.html

Dr. Fanni Aspetsberger | Max-Planck-Institut für Marine Mikrobiologie

More articles from Life Sciences:

nachricht Pesticides: Improved effect prediction of low toxicant concentrations
18.11.2019 | Helmholtz Centre for Environmental Research - UFZ

nachricht Scientists discover how the molecule-sorting station in our cells is formed and maintained
18.11.2019 | Tokyo University of Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Antibiotics from the sea

18.11.2019 | Life Sciences

Virtual "moonwalk" for science reveals distortions in spatial memory

18.11.2019 | Studies and Analyses

Living bridges: How traditional Indian building techniques can make modern cities more climate-friendly

18.11.2019 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>