Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweet surprises

03.05.2010
By characterizing the sugar content of cells, researchers have begun to reconstruct important ‘quality control’ mechanisms for protein production

By characterizing the sugar content of cells, researchers have begun to reconstruct important ‘quality control’ mechanisms for protein production

Many proteins undergo N-glycosylation, in which they are decorated with combinations of carbohydrates. These modifications not only contribute directly to normal protein function but also act as a flag for defective proteins, which get steered into a pathway known as endoplasmic reticulum-associated degradation (ERAD) with the assistance of enzymes that remove glycosylations to release free oligosaccharides (fOSs).

As an undergraduate, Tadashi Suzuki discovered the enzyme peptide:N-glycanase (PNGase) in the cytosol of mammalian cells; now, as a team leader at the RIKEN Advanced Science Institute, Wako, his group has uncovered valuable details about this enzyme’s critical contribution to the early stages of ERAD.

Suzuki and postdoctoral researcher Hiroto Hirayama recently turned to brewer’s yeast, a popular model organism, as a means to study an enigmatic PNGase-independent pathway for fOS production initially identified in mammalian cells. To achieve this, they developed an approach to selectively isolate these molecules, combining chemical labeling of oligosaccharides with a method for eliminating background contamination from â-1,6-glucans, a component of the yeast cell wall.

This strategy yielded a full library of yeast cytosolic fOSs—and some unexpected results. “To our surprise, we only detected PNGase-dependent fOSs under our experimental conditions,” says Suzuki. “This clearly indicates that mechanisms for generation of fOSs are quite distinct between mammals and yeast.”

To ensure that the full range of fOS diversity was represented, they performed their analysis in yeast lacking expression of the cytosol/vacuolar á-mannosidase (Ams1p), the only enzyme known to break down fOSs. “Very sophisticated and complicated glycan-recognition mechanisms for ERAD have been uncovered, but these conclusions have been drawn using a few model proteins,” says Suzuki. “On the other hand, we analyzed the whole population of fOSs, which means we can get information about glycan structures for all ERAD substrates.”

These data revealed that misfolded proteins can undergo diverse modifications prior to ERAD, including glycosylation by an enzyme within the Golgi apparatus, a cellular structure in which proteins typically undergo their final modifications. This suggests the existence of a previously unidentified screening mechanism at this late stage in protein synthesis that selectively redirects misfolded molecules to the ERAD system.

These and other findings suggest a great deal of hidden complexity remaining to be uncovered, and Suzuki’s team is now analyzing yeast strains with mutations in various proteins that help ‘read’ and interpret protein glycosylations. “Hopefully, through comparative fOS analysis for these strains, we can provide more precise mechanisms for the role of N-glycans in ERAD,” he says.

The corresponding author for this highlight is based at the Glycometabolome Team, RIKEN Advanced Science Institute

Journal information

1. Hirayama, H., Seino, J., Kitajima, T., Jigami, Y. & Suzuki, T. Free oligosaccharides to monitor glycoprotein endoplasmic reticulum-associated degradation in Saccharomyces cerevisiae. The Journal of Biological Chemistry published online 20 February 2010 (doi: 10.1074/jbc.M109.082081)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6245
http://www.researchsea.com

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>