Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweet! -- sugar plays key role in cell division

08.02.2010
Using an elaborate sleuthing system they developed to probe how cells manage their own division, Johns Hopkins scientists have discovered that common but hard-to-see sugar switches are partly in control.

Because these previously unrecognized sugar switches are so abundant and potential targets of manipulation by drugs, the discovery of their role has implications for new treatments for a number of diseases, including cancer, the scientists say.

In the January 12 edition of Science Signaling, the team reported that it focused efforts on the apparatus that enables a human cell to split into two, a complicated biochemical machine involving hundreds of proteins. Conventional wisdom was that the job of turning these proteins on and off — thus determining if, how and when a cell divides — fell to phosphates, chemical compounds containing the element phosphorus, which fasten to and unfasten from proteins in a process called phosphorylation.

Instead, the Johns Hopkins scientists say, there is another layer of regulation by a process of sugar-based protein modification called O-GlcNAcylation (pronounced O-glick-NAC-alation). "This sugar-based system seems as influential and ubiquitous a cell-division signaling pathway as its phosphate counterpart and, indeed, even plays a role in regulating phosphorylation itself," says Chad Slawson, Ph.D., an author of the paper and research associate in the Department of Biological Chemistry, Johns Hopkins University School of Medicine.

Because the sugar molecule has some novel qualities — it is small, easily altered, and without an electrical charge — it is virtually imperceptible to researchers using standard physical techniques of detection such as mass spectrometry.

Suspecting that the sugar known as O-GlcNAc might play a role in cell division, the Hopkins team devised a protein-mapping scheme using new mass spectrometric methods. Essentially, they applied a combination of chemical modification and enrichment methods, and new fragmentation technology to proteins that comprise the cell division machinery in order to figure out and analyze their molecular makeup, identifying more than 150 sites where the sugar molecule known as O-GlcNAc was attached. Phosphates were found to be attached at more than 300 sites.

They noticed that when an O-GlcNAc molecule was located near a phosphate site, or at the same site, it prevented the phosphate from attaching. The proteins involved in cell division weren't phosphorylated and activated until O-GlcNAc detached.

"I think of phosphorylation as a micro-switch that regulates the circuitry of cell division, and O-GlcNAcylation as the safety switch that regulates the microswitches," says Gerald Hart, Ph.D., the DeLamar Professor and director of biological chemistry at the Johns Hopkins School of Medicine.

Using a standard human cell line (HeLa cells), the scientists discovered abnormalities when they disrupted the cell division process by adding extra O-GlcNAc. Although the cell's chromosome-containing nuclei divided normally, the cells themselves didn't divide, resulting in too many nuclei per cell — a condition known as polyploidy that's exhibited by many cancer cells.

The researchers not only mapped O-GlcNAc and phosphorylation sites but also measured changes in the cell division machinery, because, Hart says, the chemical changes act more like "dimmer" switches, than simple on/off ones.

As important as the discovery is to a deeper understanding of cell division, Hart says, this extensive cross talk between O-GlcNAc and phosphorylation is paradigm-shifting in terms of signaling. Signaling is how a cell perceives its environment, and how it regulates its machinery in response to stimuli. The new sugar switches reveal that the cellular circuitry is much more complex than previously thought, he adds.

The research was funded by the National Institutes of Health.

Johns Hopkins authors on the paper are Zihao Wang, Chad Slawson, Kaoru Sakabe, Win D. Cheung and Gerald W. Hart. Other authors are Namrata D. Udeshi, Philip D. Compton, Jeffrey Shabanowitz and Donald F. Hunt, all of the University of Virginia.

On the Web:
http://biolchem.bs.jhmi.edu/pages/facultydetail.aspx?AspXPage=g%5FA13E315C00C04DFD949FD3E57BA45181:ID%3D83

http://stke.sciencemag.org/

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Medicine O-GlcNAc O-GlcNAcylation cell division human cell proteins sweet

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>