Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweet potato uses a single odor to warn its neighbors of insect attack

02.12.2019

A single volatile substance can be sufficient to induce a defense response in sweet potatoes to herbivores. Researchers have identified this substance and shown that the mechanism is not only limited to the attacked plant itself but also alerts unaffected neighboring plants to defend themselves against attackers. This response is specific and not observed in every sweet potato cultivar. The results of the study are of interest for breeding resistant sweet potato cultivars.

Sweet potatoes (Ipomoea batatas) are becoming more and more popular: Whether in soup or as fries, they increasingly compete with “regular” potatoes which, surprisingly, are only distantly related.


Axel Mithöfer and Anja Meents examine a sweet potato plant.

Angela Overmeyer / Max Planck Institute for Chemical Ecology

Although economically not as important as the potato world-wide , the sweet potato has a higher nutritional value and is richer in vitamins. Particularly in Asia, the crop is an important source of nutrients. As with potatoes, there are different cultivars of sweet potatoes available, all displaying their own characteristics.

Even cultivars grown in the field under similar conditions may differ strikingly with respect to insect attack. In previous studies, a cultivar known as Tainong 57 had demonstrably higher resistance to field herbivores in comparison to the cultivar known as Tainong 66. When attacked, the plants’ leaves emit a distinct odor bouquet.

Researchers at the Max Planck Institute for Chemical Ecology in Jena, Germany, and at the National Taiwan University wanted to find out whether the high insect resistance in one cultivar was related to this odor.

They especially wanted to know whether sweet potatoes have mechanisms to activate defense responses via volatile signals, as described in other plant species.

First the scientists examined what happens in a plant after it has been attacked by herbivores. Plants of the resistant cultivar synthesize a plant hormone in the wounded leaves that is important for activating defense mechanisms. These plants also emit a bouquet of odors.

As a result, a substance (sporamin) is formed in Tainong 57 leaves that are not directly affected by attack. Sporamin inhibits digestive enzymes in the attacking insects and causes the herbivores to completely lose their appetite. At the same time, sporamin is the dominant storage protein in the tuber and the reason why sweet potatoes must be cooked before being consumed.

In the odor bouquet, only a single substance, DMNT, is responsible for this defense response: “DMNT is a terpene compound and smells almost a bit like herbal balm. One could imagine it as a fragrance used in a sauna,” says Anja Meents, first author of the study and doctoral researcher at the MPI for Chemical Ecology, describing the scent.

DMNT triggers the formation of the defense protein not only in the affected plant but also in neighboring plants that have not yet been attacked by herbivores. These plants are able to perceive the smell quickly and efficiently in order to prepare themselves to meet the impending threat.

“To our surprise, only one single volatile is enough to induce a specific defense reaction in a sweet potato plant of the Tainong 57 cultivar. Moreover, the same substance is simultaneously used by the plant for communication with neighboring plants in order to transmit important information,” points out Axel Mithöfer, head of the Research Group Plant Defense Physiology.

Interestingly, only plants of the resistant Tainong 57 cultivar released DMNT in high concentrations and were able to perceive the odor. Plants of the Tainong 66 cultivar, in contrast, released significantly less DMNT; even when the level of DMNT was increased, plants of this herbivore-susceptible sweet potato cultivar were unable to improve the effectiveness of their defense response.

“Our results are of great agricultural importance, because the consistent cultivation of resistant cultivars, such as Tainong 57, could help to considerably reduce the damage caused by herbivores in a natural way,” Meents explains, indicating the practical potential of the study.

The development of cultivars that release higher amounts of DMNT and which can perceive DMNT more efficiently compared to the cultivars in the study could further minimize the use of pesticides.

In further studies, the team of researchers would like to examine more closely how Tainong 57 perceives DMNT and transfers the signal into a defense response.

Contact and Picture Requests:

Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, Tel. +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download of the video and high-resolution images via http://www.ice.mpg.de/ext/downloads2019.html

Wissenschaftliche Ansprechpartner:

PD Dr. Axel Mithöfer, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany, Tel. +49 3641 57-1263, E-Mail amithoefer@ice.mpg.de

Originalpublikation:

Meents, A. K., Chen, S.-P., Reichelt, M., Lu, H.-H., Bartram, S., Yeh, K.-W., Mithöfer, A. (in press). Volatile DMNT systemically induces jasmonate-independent direct anti-herbivore defense in leaves of sweet potato (Ipomoea batatas) plants. Scientific Reports, 9, 17431, DOI: 10.1038/s41598-019-53946-0
https://doi.org/10.1038/s41598-019-53946-0

Weitere Informationen:

http://www.ice.mpg.de/ext/index.php?id=plant-defense-physiology Research Group Plant Defense Physiology

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Life Sciences:

nachricht Strong evidence – Essential regulatory gene for the formation of heart valves discovered
03.08.2020 | Universität Potsdam

nachricht Scientists find new way to kill tuberculosis
31.07.2020 | Durham University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Collisions in the solar system: Bayreuth researchers explain the origins of stony-iron meteorites

03.08.2020 | Physics and Astronomy

Improving the monitoring of ship emissions

03.08.2020 | Ecology, The Environment and Conservation

Time To Say Goodbye: The MOSAiC floe’s days are numbered

31.07.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>