Swedish scientists stop acorn barnacles

Acorn barnacles, which are animals, are among the most notorious stowaways at sea. A vessel with its hull covered by their hard calcium shells moves more slowly and uses more fuel.

The most common method to prevent surface fouling is to apply toxic hull paint. The most effective substance has been tributhyl tin (TBT), which is now totally banned. But until now no really good alternatives to toxic paint have been found.

“Our strategy, instead, is to design surfaces that the barnacle glue doesn't stick to. The idea is for the larvae to swim off and find another place to fasten themselves for the rest of their lives,” says Tobias Ekblad, a doctoral candidate in molecular physics and an associate in the EU project AMBIO.

To study how a larva walks around on its 'feet' – actually the front parts of a couple of antennae – and leaves micrometer-size footprints, the scientists make use of so-called surface plasmon resonance. This measurement method, based on electromagnetic wave movements in the interface between the surface and sea water, can detect the minimal optical changes that occur when the thin (10 millionths of a millimeter) footprints are made. In this way they can see in real time how the prints occur and monitor their movements back and forth across the surface.

The findings presented in Tobias Ekblad's thesis show that what determines whether the larvae like a surface or not is chemistry. Ekblad has developed a method to cover a material with a thin layer of water-filled gel, a hydrogel, that has been tested with different chemical components. For example, layers containing the polymer polyethylene glycol (PEG) have been shown to yield excellent results.

The researchers have also studied the effect of how blood coagulates on various surfaces, a problem that is encountered when prostheses are operated into the body. As in the barnacle growth project, they have found that the usable materials are those that dramatically decrease the binding of proteins to the surface.

Contact:
Tobias Ekblad, phone: +46 (0)13-285648; mobile: +46 (0)70-3345768, tobias.ekblad@liu.se

Pressofficer Åke Hjelm, +46-13281 395;ake.hjem@liu.se

Reference link: AMBIO (Advanced Nanostructured Surfaces for the Control of Biofouling http://www.ambio.bham.ac.uk/index.shtml

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors