New survey of DNA alterations could aid search for cancer genes

The researchers said the mapping of the abnormal regions gives cancer scientists a starting point from which to search for as-yet undiscovered oncogenes and broken tumor-suppressor genes, which allow cells to divide and grow uncontrollably.

Published in the October issue of Nature Genetics, the results are part of an ongoing international research effort to define the landscape of DNA mutations and other genetic changes that fuel the development of cancer.

The authors said it is the largest analysis to date of the role of DNA “copy number alterations” across several types of cancer. Normal cells carry two copies of the 20,000 genes that make up the genome. The genomes of cancer cells typically are riddled with areas where genetic sequences are duplicated or deleted; in fact, copy number alterations affect more of the genome than any other DNA abnormality in cancer. The study's goal was to identify patterns of copy number alterations and determine how they promote cancer.

In the survey of 4,934 cancers of 11 types, “we found that cancers often undergo doubling of the entire genomes, followed by large numbers of smaller copy number alteration events,” said Rameen Beroukhim, MD, PhD, assistant professor of Medicine at Dana-Farber and an associate member of the Broad Institute. “We also saw a propensity of copy number changes to occur at telomeres [the tips of chromosomes] and they exhibit features indicating they arise from different mechanisms than copy number changes of regions within chromosomes.”

Beroukhim is co-senior author of the report along with Matthew Meyerson, MD, PhD, of Dana-Farber and the Broad, and Gad Getz, PhD, of Massachusetts General Hospital and the Broad.

The analysis also revealed 70 regions of the cancer genome that undergo duplications –also known as amplifications – more often than would be expected by chance and 70 regions that contain deletions more often than would be expected by chance. “We expect these 140 regions to contain a number of as-yet unknown oncogenes and tumor suppressor genes,” Beroukhim said.

On average, these 140 regions included three to four genes. However, only 35 of the regions contained known oncogenes or tumor suppressor genes previously linked to cancer. “So there is a lot left to discover in the cancer genome,” Beroukhim said. “These regions provide the research community a starting point to evaluate possible novel oncogenes and tumor suppressor genes.” The results have been made available in a publicly accessible website, http://www.broadinstitute.org/tcga.

He added that further study of the copy number variation database generated by the researchers “will help us understand better how cancers arise and what are the genes involved. And when we understand that, we can develop diagnostics and therapeutics that counteract those genes.”

The research used data compiled through The Cancer Genome Atlas Pan-Cancer Initiative, part of The Cancer Genome Atlas Project led by the National Cancer Institute and the National Human Genome Research Institute.

Co-first authors of the report are Travis Zack and Steven Schumacher in the Beroukhim lab at Dana-Farber.

The research was funded in part from grants from the National Institutes of Health (U24CA143867, U24CA143845, U54CA143798, U54HG003067, and U24CA143882), the V Foundation, and the Pediatric Low-Grade Astrocytoma Foundation.

—Written by Richard Saltus

About Dana-Farber Cancer Institute

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center, designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Boston Children's Hospital as Dana-Farber/Boston Children's Cancer and Blood Disorders Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding. Follow Dana-Farber on Facebook and on Twitter.

Media Contact

Bill Schaller EurekAlert!

More Information:

http://www.dfci.havard.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

The Sound of the Perfect Coating

Fraunhofer IWS Transfers Laser-based Sound Analysis of Surfaces into Industrial Practice with “LAwave”. Sound waves can reveal surface properties. Parameters such as surface or coating quality of components can be…

Customized silicon chips

…from Saxony for material characterization of printed electronics. How efficient are new materials? Does changing the properties lead to better conductivity? The Fraunhofer Institute for Photonic Microsystems IPMS develops and…

Acetylation: a Time-Keeper of glucocorticoid Sensitivity

Understanding the regulatory mechanism paves the way to enhance the effectiveness of anti-inflammatory therapies and to develop strategies to counteract the negative effects of stress- and age-related cortisol excess. The…

Partners & Sponsors