Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising role of bacterial genes in evolution

12.10.2016

We generally think of inheritance as the genetic transfer from parent to offspring and that evolution moves toward greater complexity. But there are other ways that genes are transferred between organisms.

Sometimes a "host" organism can obtain genes from another organism that resides within its own cell (called an endosymbiont) through a process known as endosymbiotic gene transfer. At other times, an organism can obtain genes from a creature that lives in the surrounding environment, or from something that it eats, which is called horizontal gene transfer.


This micrograph of the single-celled Paulinella shows the the photosynthetic "machinery" in green.

Credit: Eva Nowack

Furthermore, some levels of gene transfer can result in extensive loss of genes and genome reduction, especially for organisms that live as endosymbionts. For the first time, researchers have demonstrated that horizontal gene transfer may play a dominant role in compensating for genome reduction in an endosymbiont, and that this may be a key feature in the evolutionary transformation of an endosymbiont into an organelle (a longstanding organ inside a cell that often has specialized functions).

The research, published in the October 10 on-line edition of the Proceedings of the National Academy of Sciences, was conducted as a collaboration between scientists at Carnegie's Department of Plant Biology*, Rutgers University and Heinrich-Heine-Universität in Düsseldorf.

Specialized organelles called chloroplasts, which occur in plants and algae, are critical for performing the process of photosynthesis, and thus manufacturing sugars, starch and oils. These organelles originated more than 1 billion years ago when a photosynthetic bacterium, called a cyanobacterium, was engulfed by a host organism called a protist. There was a subsequent massive loss of genes from the genome of the cyanobacterium. Some of the lost cyanobacterial genes were transferred to the nucleus of the host cell through endosymbiotic gene transfer, while others were completely lost. This genome reduction was accompanied by the loss of many endosymbiont genes critical for the chain of enzymatic reactions involved in the biosynthesis of various essential compounds. How the host compensated for this gene reduction was only partially known.

Surprising results that shed light on the evolution of organelles from endosymbionts were obtained using the green, single-celled organism Paulinella chromatophora. Carnegie co-author Arthur Grossman explained: "We have recently proposed that the loss of genes from the photosynthetic organelle of P. chromatophora, which is called a chromatophore (originally an endosymbiotic cyanobacterium that was engulfed by a Paulinella species 60-200 million years ago), was in many cases compensated for by genes coming from neighboring bacteria in the environment. These new genes were integrated into the host nucleus and the proteins made from these genes were routed into chromatophores, where they compensate for the loss of genes."

Lead author Eva Nowack remarked: "Of the at least 229 genes in the P. chromatophora nucleus that were acquired from various bacteria, only about 25% are of cyanobacterial origin and may have originated from endosymbiotic gene transfer. Excitingly, many of the remainder were acquired through horizontal gene transfer, representing genes from a variety of bacteria. Many of these bacteria-derived genes produce proteins that fill in gaps in chromatophore localized biosynthetic pathways. The original genes that filled the gaps were lost as a consequence of chromatophore genome reduction. This result suggests a dominant role for horizontal gene transfer in compensating for endosymbiont genome reduction."

Furthermore, researchers found that a sister (ancestral) organism to P. chromatophora does not have a chromatophore and feeds on a variety of different bacteria, much like the way that white blood cells consume invading bacteria. In this new work, it is hypothesized that this method of feeding, called phagotrophy, may allow for the acquisition of different bacterial genes through horizontal gene transfer. In this way, the process of feeding facilitated bacterial gene selection as the cyanobacterial endosymbiont became a permanent resident within the phagotrophic host during early stages of chromatophore evolution.

###

* Authors on the paper are Eva C.M. Nowack, Dana C. Price, Debashish Bhattacharya, Anna Singer, Michael Melkonian, and Arthur R. Grossman This study was supported by National Science Foundation grant MCB-10370 (to A.R.G.), EF 08-27023 and OCE 11-29203 (to D.B.), and Deutsche Forschungsgemeinschaft Grant NO 1090/1-1 (to E.C.M.N.)

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Arthur Grossman | EurekAlert!

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>