Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprises Discovered in Decoded Kiwifruit Genome

29.10.2013
A new study that decoded the DNA sequence of the kiwifruit has concluded that the fruit has many genetic similarities between its 39,040 genes and other plant species, including potatoes and tomatoes. The study also has unveiled two major evolutionary events that occurred millions of years ago in the kiwifruit genome.

“The kiwifruit is an economically and nutritionally important fruit crop. It has long been called ‘the king of fruits’ because of its remarkably high vitamin C content and balanced nutritional composition of minerals, dietary fiber and other health-benefits,” says Zhangjun Fei, a scientist from the Boyce Thompson Institute at Cornell University. Fei contributed heavily to the study, which was conducted by a team of plant scientists from the United States and China and published Oct. 18 in Nature Communications.

“The genome sequence will serve as a valuable resource for kiwifruit research and may facilitate the breeding program for improved fruit quality and disease resistance,” Fei says.

Kiwifruit originated from the mountains and ranges of southwestern China and was not really known to the world until the early 20th century, when farmers in New Zealand discovered the fruit and began breeding it as a commercial crop. It is a form of berry that grows on woody vines, much like grapes, and belongs to the order of Ericales, where blueberries, tea bushes and Brazil nuts are also classified.

One of the most remarkable findings of the study was uncovered when scientists observed a high percentage of similarities within the kiwifruit DNA. The data revealed two unusual mishaps that occurred in the process of cell division about 27 and 80 million years ago, when an extensive expansion of genes arose from an entire extra copy of the genome, followed by extensive gene loss.

Fei explains, “The kiwifruit genome has undergone two recent whole-genome duplication events.”

When genes are duplicated, the extra genes can mutate to perform entirely new functions that were not previously present in the organism. This process, called neofunctionalization, can occur with no adverse effects in plants and, in the case of kiwifruit, was quite beneficial.

“The duplication contributed to adding additional members of gene families that are involved in regulating important kiwifruit characteristics, such as fruit vitamin C, flavonoid and carotenoid metabolism,” says Fei.

For the sequencing, the scientists used a Chinese variety called “Hongyang,” which is widely grown in China, to produce the draft sequence. They then compared kiwifruit to the genomes of other representative plant species including tomato, rice, grape and the mustard weed Arabidopsis. They uncovered about 8,000 genes that were common among all five species. The comparison revealed important evolutionary relationships, including the development genes related to fruit growth, ripening, nutrient metabolism, and disease resistance.

Prior to the study, extensive research on the metabolic accumulation of vitamin C, carotenoids and flavonoids had been reported in kiwifruits, but genome sequence data, critical for its breeding and improvement, had never been available.

“The kiwifruit genome sequence represents the first of a member in the order Ericales, thus providing a valuable resource for comparative genomics and evolutionary studies,” Fei says. “We expect to continue generating genome sequences from other kiwifruit varieties to investigate the genetic diversity of kiwifruit and elucidate regulatory networks of important biological processes.”

The sequence is accessible online at the Kiwifruit Genome Database.
Cornell University has television and ISDN radio studios available for media interviews.

Melissa Osgood | Newswise
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>