Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surfaces and Interfaces

26.11.2010
Innovative techniques allow researchers to study interfaces with great precision. The methods could become powerful tools in the rational design of catalytic materials

Equipment built by German scientists can be used to study processes at interfaces with great accuracy. In an article published recently in ChemPhysChem, Hans Joachim Freund and co-workers of the Fritz-Haber-Institut in Berlin describe the advancement of four experimental techniques developed in their lab to investigate nanoscopic systems.

By combining photon scanning tunneling microscopy, aberration-corrected low-energy electron microscopy coupled to photoelectron emission microscopy, microcalorimetry, and electron-spin resonance spectroscopy, unique information on the relationship between geometric structure and properties is obtained. The methods can be applied to solve fundamental problems in surface science and to study interesting systems -particularly in the field of catalysis- which would otherwise be difficult (or impossible) to address.

“Catalysis happens at interfaces and experimental techniques are desperately needed to provide information on those systems”, says Freund who is interested in understanding disperse metal and oxide catalysts at the atomic scale. According to the researcher, appropriate samples in this field are very complex so that a combination of techniques is generally required to achieve a complete picture and avoid overestimating individual results. This led him and his colleagues to design new instruments to characterize their systems.

The first method developed by the German team could overcome one of the main disadvantages of scanning probe techniques, namely, their inherent chemical insensitivity, by detecting the fluorescence signal generated by locally exciting the surface with electrons from the tip. The new technique is called photon scanning tunneling microscopy (PSTM) and has been used to study the optical characteristics of metal particles and investigate defect structures in oxide surfaces. Additionally, the researchers are working on a new aberration-corrected instrument for low-energy electron microscopy (LEEM) and photoelectron emission microscopy (PEEM), which will hopefully allow them to investigate single supported nanocatalysts. Freund and co-workers have also built a highly sensitive microcalorimeter that can be used to measure temperature-dependent heats of adsorption on nanoparticle ensembles with aggregate sizes of about a hundred atoms. The fourth technique, called electron-spin resonance (ESR) spectroscopy, can be applied to study particle ensembles and may provide interesting information that is out of reach for other methods, the authors say.

Author: Hans Joachim Freund, Fritz-Haber Institut der Max-Planck Gesellschaft, Berlin (Germany), http://www.fhi-berlin.mpg.de/cp/hjf.epl

Title: Innovative Measurement Techniques in Surface Science

ChemPhysChem 2011, 12, No. 1, Permalink to the article: http://dx.doi.org/10.1002/cphc.201000812

Hans Joachim Freund | Wiley-VCH
Further information:
http://www.fhi-berlin.mpg.de/cp/hjf.epl
http://www.wiley-vch.de

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>