Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surface Tension Drives Segregation within Cell Mixtures

08.10.2008
What does a mixture of two different kinds of cells have in common with a mixture of oil and water? The same basic force causes both mixtures to separate into two distinct regions.

That is the conclusion of a new three-dimensional computer model of the cell sorting process produced by Shane Hutson, assistant professor of physics at Vanderbilt University, and his colleagues at the University of Waterloo in Canada that is described in the Oct. 3 issue of the journal Physical Review Letters.

The force in question is surface tension – a property of liquids that arises from intermolecular forces – specifically an effect called the Plateau-Rayleigh Instability that explains the tendency of water to form droplets.

Mechanical interactions between cells play an important role in a number of biological processes, including the development of embryos and the spread of cancer. Understanding these interactions is particularly important in current efforts to create artificial tissues.

“In order to design and control the building of artificial tissues of any sort, we have to understand how cell/cell interactions drive shape and structure formation at a very deep level,” Hutson says.

Currently, these interactions are often modeled using analogs from fluid mechanics including viscosity and surface tension. “What we have shown is a fascinating new role for surface tension in the process of cell sorting – the ability of random mixtures of two cell types to spontaneously sort themselves into two distinct domains,” Hutson says.

Previous 2-D and 3-D models of cell sorting had indicated that surface tension alone was not powerful enough to drive this “unmixing” process by itself, leading researchers to propose that the cells themselves must also change shape randomly to keep the process from grinding to a halt before it is completed.

The new computer model looked at the structure of the 3-D mixtures in greater detail. It showed that in mixtures where the minority cell type makes up at least 25 percent of the mix, more than 95 percent of the minority cells are in direct contact with other minority cells instead of being totally surrounded by majority cells and found that this contact enhances the surface tension effect, allowing it to drive the sorting process without assistance from cell fluctuations.

Hutson’s collaborators from the University of Waterloo are G. Wayne Brodland, Justina Yang and Denis Viens. The work was supported by the Natural Sciences and Engineering Research Council of Canada, the National Science Foundation and the Human Frontier Science Program.

David F. Salisbury | Newswise Science News
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Progress in Super-Resolution Microscopy
17.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>