Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surface modification using accelerated electrons: fast, gentle, precise, stable and durable

14.02.2018

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development in the area of surface functionalization, will be presenting research results from the field of biofunctionalization and hygienization at the 13th ThGOT Thementage Grenz- and Oberflächentechnik in Zeulenroda, Germany, March 13 – 15, 2018.

Surfaces must satisfy a wide range of requirements: they need to be decorative, and even contribute substantially to hygiene. They also play a large role in biomedicine.


Wetting properties of functionalized surfaces with various liquids

© Fraunhofer FEP, Picture in printable resolution: www.fep.fraunhofer.de/press

There are numerous processes for functionalizing surfaces, depending on the application. Many are already well established and others are still under development by scientists throughout the world. Scientists at Fraunhofer FEP have already been working for a considerable time on functionalizing surfaces for the medical technology field.

In addition to coating technologies, accelerated low-energy electrons are also employed for this purpose. The surface is selectively treated with these electrons in order to achieve suitable properties. Besides antibacterial effects, “self-cleaning” surfaces can also be created in this way.

Electron beam treatment can result in a modification of the wetting characteristics for the surface (surface hydrophilicity), for example. In this way, the interaction of the surface with the environment can be selectively influenced. Human cells attach better, while bacteria in turn are rejected.

The order of magnitude of the dimensions for which this modification was able to be carried out is particularly noteworthy. Finely masking of samples with a lattice structure produced alternate hydrophilic (good wetting) and hydrophobic (poor wetting) surface areas with 100 μm separations. These very fine features characterized by differing surface energies are suited to lab-on-a-chip systems, for example, or for individualized growth patterns.

Gaby Gotzmann, head of hygienization, sterilization, and biofunctionalization at Fraunhofer FEP, explains: “While conventional processes often produce only temporary effects on surfaces, treatment with accelerated electrons leads to stable surfaces over a longer period. On suitable surfaces, the relevant areas can be treated very precisely, achieving penetration depths of even microns.”

Functionalization by means of electron beam was achieved rapidly. The challenge, however, lay in investigating the fundamental mechanisms of the effects in order to be able to reliably produce the results in the future. How the functionalization can be influenced by process parameters, needed to be explored. To accomplish this, comprehensive parametric studies were carried out by varying specific process parameters like atmosphere and incident energy, as well as in vitro cell tests that finally confirmed these insights.

The scientists are now able to set up a precise surface treatment procedure using electron beams for numerous surface applications in medical engineering and are seeking industrial partners for jointly producing functionalized surfaces.

Fraunhofer FEP at the 13th annual ThGOT 2018:

Exhibition booth

Conference presentation:
- „Langlebige Implantate – Herausforderungen an die Implantat-Knochenschnittstelle“
Gaby Gotzmann, 15.03.2018, 4:20 p.m.
- „Piezoelektrische AlN- und AlScN-Schichten für die energieautarke Sensorik“
Hagen Bartzsch, 13.03.2018, 1:50 p.m.

Poster:
- Electron beam curing of elastomers for 3D printing of biocompatible medical products
- Elektronenstrahlbasierte Fixierung von organischen Stoffen an medizintechnische Oberflächen

Press contact:

Mrs. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Phone +49 351 2586 333 | presse@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/TqM

Silvena Ilieva | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Life Sciences:

nachricht Discovery of genes involved in the biosynthesis of antidepressant
09.12.2019 | Leibniz Institute of Plant Genetics and Crop Plant Research

nachricht Scientists have spotted new compounds with herbicidal potential from sea fungus
09.12.2019 | Far Eastern Federal University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

The Arctic atmosphere - a gathering place for dust?

09.12.2019 | Earth Sciences

New ultra-miniaturized scope less invasive, produces higher quality images

09.12.2019 | Information Technology

Discovery of genes involved in the biosynthesis of antidepressant

09.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>