Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surface modification using accelerated electrons: fast, gentle, precise, stable and durable

14.02.2018

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development in the area of surface functionalization, will be presenting research results from the field of biofunctionalization and hygienization at the 13th ThGOT Thementage Grenz- and Oberflächentechnik in Zeulenroda, Germany, March 13 – 15, 2018.

Surfaces must satisfy a wide range of requirements: they need to be decorative, and even contribute substantially to hygiene. They also play a large role in biomedicine.


Wetting properties of functionalized surfaces with various liquids

© Fraunhofer FEP, Picture in printable resolution: www.fep.fraunhofer.de/press

There are numerous processes for functionalizing surfaces, depending on the application. Many are already well established and others are still under development by scientists throughout the world. Scientists at Fraunhofer FEP have already been working for a considerable time on functionalizing surfaces for the medical technology field.

In addition to coating technologies, accelerated low-energy electrons are also employed for this purpose. The surface is selectively treated with these electrons in order to achieve suitable properties. Besides antibacterial effects, “self-cleaning” surfaces can also be created in this way.

Electron beam treatment can result in a modification of the wetting characteristics for the surface (surface hydrophilicity), for example. In this way, the interaction of the surface with the environment can be selectively influenced. Human cells attach better, while bacteria in turn are rejected.

The order of magnitude of the dimensions for which this modification was able to be carried out is particularly noteworthy. Finely masking of samples with a lattice structure produced alternate hydrophilic (good wetting) and hydrophobic (poor wetting) surface areas with 100 μm separations. These very fine features characterized by differing surface energies are suited to lab-on-a-chip systems, for example, or for individualized growth patterns.

Gaby Gotzmann, head of hygienization, sterilization, and biofunctionalization at Fraunhofer FEP, explains: “While conventional processes often produce only temporary effects on surfaces, treatment with accelerated electrons leads to stable surfaces over a longer period. On suitable surfaces, the relevant areas can be treated very precisely, achieving penetration depths of even microns.”

Functionalization by means of electron beam was achieved rapidly. The challenge, however, lay in investigating the fundamental mechanisms of the effects in order to be able to reliably produce the results in the future. How the functionalization can be influenced by process parameters, needed to be explored. To accomplish this, comprehensive parametric studies were carried out by varying specific process parameters like atmosphere and incident energy, as well as in vitro cell tests that finally confirmed these insights.

The scientists are now able to set up a precise surface treatment procedure using electron beams for numerous surface applications in medical engineering and are seeking industrial partners for jointly producing functionalized surfaces.

Fraunhofer FEP at the 13th annual ThGOT 2018:

Exhibition booth

Conference presentation:
- „Langlebige Implantate – Herausforderungen an die Implantat-Knochenschnittstelle“
Gaby Gotzmann, 15.03.2018, 4:20 p.m.
- „Piezoelektrische AlN- und AlScN-Schichten für die energieautarke Sensorik“
Hagen Bartzsch, 13.03.2018, 1:50 p.m.

Poster:
- Electron beam curing of elastomers for 3D printing of biocompatible medical products
- Elektronenstrahlbasierte Fixierung von organischen Stoffen an medizintechnische Oberflächen

Press contact:

Mrs. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Phone +49 351 2586 333 | presse@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/TqM

Silvena Ilieva | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Life Sciences:

nachricht Airborne chemicals instantly identified using new technology developed at NTU Singapore
16.10.2019 | Nanyang Technological University

nachricht Family of crop viruses revealed at high resolution for the first time
15.10.2019 | John Innes Centre

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Quantum physics: Ménage à trois photon-style

16.10.2019 | Physics and Astronomy

Airborne chemicals instantly identified using new technology developed at NTU Singapore

16.10.2019 | Life Sciences

Always on beat: ultrashort flashes of light under optical control

16.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>