Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supposed Help Against Tumors - How Tumor Cells Use the Body's Protection

05.12.2008
Glioblastoma is one of the most common but also most aggressive brain tumors, almost invariably leading to death in a short time. It consists of different cell types and their precursors, complicating successful treatment.

To fight the driving force of the tumor - the tumor stem cells - scientists have been trying to initiate apoptosis in these cells. However, Dr. Ana Martin-Villalba (German Cancer Research Center, DKFZ, Heidelberg, Germany) suspects that the activated apoptosis program accelerates the progress of the disease. "The tumor growth declines when apoptosis is blocked," she reported at the conference "Brain Tumor 2008" at the Max Delbrück Center (MDC) Berlin-Buch, Germany.

Glioblastomas grow like corals and form filigran branches into nearby, healthy brain tissue. For that reason it is very difficult for neurosurgeons to remove the tumor entirely because the risk of damaging healthy tissue is too high. Moreover, glioblastomas are resistant to conventional therapies which normally activate the body's apoptosis program.

This programmed cell death is a vital process. It plays an important role during development but also in the adult organism. Together with its partner CD95L, the molecular switch CD95 ensures that sick or abnormal cells are removed. Once activated, CD95 triggers a chain of different signals which in the end lead to the death of the damaged cell. Until recently, scientists were convinced that triggering apoptosis in brain tumors was a useful tool for not only killing the tumor but also the cells of its origin - the tumor stem cells.

The scientist from Heidelberg could show that CD95 as well as its partner CD95L is active in the tumor cells. However, the cells do not die. "Instead, the signal stimulates the tumor cells to migrate into neighboring, healthy brain regions," Dr. Martin-Villalba explained. For instance, it activates the protein MMP which "drills" its way into the brain tissue. "Contrary to our expectations," the neuroscientist said, "what we find when we activate apoptosis in the tumor cells is that we help them spread into healthy nerve tissue."

In experiments with mice, the researchers could already show that the tumor proliferates less aggressively when they block CD95L with an antibody, thus inhibiting the activation of programmed cell death. "With this changed perspective, we hope to develop new ideas for tumor therapy in the future," Dr. Martin-Villalba said.

Altogether, about 180 scientists and clinicians from Europe and the USA came to the two-day conference, which ended this Friday afternoon. The organizers were the MDC, the Charité - Universitätsmedizin Berlin, and HELIOS Kliniken GmbH, Berlin, a private clinic in Berlin-Buch.

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/
http://www.dkfz-heidelberg.de/en/molekulare-neurobiologie/index.html
http://www.cell.com/cancer-cell/retrieve/pii/S1535610808000433

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>