Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconductivity: No resistance at record temperatures

18.08.2015

Hydrogen sulfide loses its electrical resistance under high pressure at minus 70 degrees Celsius

For many solid-state physicists, superconductors that are suitable for use at room temperature are still a dream. Up until now, the only materials known to conduct current with no electrical resistance and thus no loss did so only at very low temperatures.


The apparatus to generate high pressures, is amazingly handy. The researchers press the metal cell with screws together. The high pressure created in the center of the cell, only diamonds resist.

Thomas Hartmann

Accordingly, special copper ceramics (cuprates) took the leading positions in terms of transition temperature—the temperature at which the material loses its resistance. The record for a ceramic of this type is roughly minus 140 degrees Celsius at normal air pressure and minus 109 degrees Celsius at high pressure. In the ceramics, a special, unconventional form of superconductivity occurs. For conventional superconductivity, temperatures of at least minus 234 degrees Celsius have so far been necessary.

A team led by Mikhael Eremets, head of a working group at the Max Planck Institute for Chemistry, working in collaboration with the researchers at Johannes Gutenberg University Mainz has now observed conventional superconductivity at minus 70 degrees Celsius, in hydrogen sulfide (H2S).

To convert the substance, which is a gas under normal conditions, into a superconductor the scientists did however have to subject it to a pressure of 1.5 megabar (1.5 million bar), as they describe in the latest edition of the science magazine Nature.

The transition temperature of conventional superconductivity knows no limits

“With our experiments we have set a new record for the temperature at which a material becomes superconductive,” says Mikhael Eremets. His team have also been the first to prove in an experiment that there are conventional superconductors with a high transition temperature. Theoretical calculations had already predicted this for certain substances including H2S.

“There is a lot of potential in looking for other materials in which conventional superconductivity occurs at high temperatures,” says the physicist. “There is theoretically no limit for the transition temperature of conventional superconductors, and our experiments give reason to hope that superconductivity can even occur at room temperature.”

The researchers generated the extremely high pressure required to make H2S superconductive at comparatively moderate negative temperatures in a special pressure chamber smaller than one cubic centimeter in size. The two diamond tips on the side, which act as anvils, are able to constantly increase the pressure that the sample is subjected to. The cell is equipped with contacts to measure the electrical resistance of the sample. In another high-pressure cell, the researchers were able to investigate the magnetic properties of a material that also change at the transition temperature.

After the researchers had filled the pressure chamber with liquid hydrogen sulfide, they increased the pressure acting on the sample gradually up to roughly two megabar and changing the temperature for each pressure level. They took measurements of both resistance and magnetization to determine the material’s transition temperature. The magnetization measurements provide very useful information, because a superconductor possesses ideal magnetic properties.

Hydrogen atoms facilitate superconductivity at high temperatures

The researchers believe that it is mainly hydrogen atoms that are responsible for hydrogen sulfide losing its electrical resistance under high pressure at relatively high temperatures: Hydrogen atoms oscillate in the lattice with the highest frequency of all elements, because hydrogen is the lightest.

As the oscillations of the lattice determine the conventional superconductivity—and do this more effectively the faster the atoms oscillate—materials with high hydrogen content exhibit a relatively high transition temperature. In addition, strong bonds between the atoms increase the temperature at which a material becomes superconductive. These conditions are met in H3S, and it is precisely this compound that develops from H2S at high pressure.

Mikhael Eremets and his team are now looking for materials with even higher transition temperatures. Increasing the pressure acting on the hydrogen sulfide above 1.5 megabar is not helpful in this case. This has not only been calculated by theoretical physicists, but now also confirmed in experiments performed by the team in Mainz. At even higher temperatures the electron structure changes in such a way that the transition temperature slowly begins to drop again.

Wanted: hydrogen-rich materials with a higher transition temperature

“An obvious candidate for a high transition temperature is pure hydrogen,” says Mikhael Eremets. “It is expected that it would become superconductive at room temperature under high pressure.” His team has already begun experimenting with pure hydrogen, but the experiments are very difficult as pressures of three to four megabar are required.

“Our research into hydrogen sulfide has however shown that many hydrogen-rich materials can have a high transition temperature,” says Eremets. It may even be possible to realize a high-temperature superconductor worth the name in terms of common temperature perception without high pressure. The researchers in Mainz currently need the high pressure to convert materials that act electrically insulating like hydrogen sulfide into metals.

“There may be polymers or other hydrogen-rich compounds that can be converted to metals in some other way and become superconductive at room temperature,” says the physicist. If such materials can be found, we would finally have them: superconductors that can be used for a wide range of technical applications. SB/PH

Original publication:
Conventional superconductivity at 203 K at high pressures
Alexander Drozdov, Mikhail Eremets, Ivan Troyan, Vadim Ksenofontov, Sergii Shylin Nature, 17. August 2015

Weitere Informationen:

http://www.mpic.de/en/news/press-information/news/supraleitung-widerstandslos-be...

Dr. Susanne Benner | Max-Planck-Institut für Chemie

More articles from Life Sciences:

nachricht Another piece of Ebola virus puzzle identified
17.01.2019 | Texas Biomedical Research Institute

nachricht New scale for electronegativity rewrites the chemistry textbook
17.01.2019 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A new twist on a mesmerizing story

17.01.2019 | Physics and Astronomy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>