Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputing Research Opens Doors for Drug Discovery

13.12.2010
A quicker and cheaper technique to scan molecular databases developed at the Department of Energy’s Oak Ridge National Laboratory could put scientists on the fast track to developing new drug treatments.

A team led by Jerome Baudry of the University of Tennessee-ORNL Center for Molecular Biophysics adapted a widely used existing software to allow supercomputers such as ORNL’s Jaguar to sift through immense molecular databases and pinpoint chemical compounds as potential drug candidates.

The research was published in the Journal of Computational Chemistry as “Task-parallel MPI implementation of Autodock4 for docking of very large databases of compounds using High Performance Super-Computers.”

“Our research is the missing link between supercomputers and the huge data available in molecular databases like the Human Genome Project,” Baudry said. “We have an avalanche of data available to us, and now we need to translate that data into knowledge.”

Such translation is critical for the first stages of drug development, in which researchers look for appropriate chemicals that interact with a target in the body, typically a protein. If the chemical is suitable, it attaches onto the protein and produces a desirable effect in the cell.

But with thousands of known proteins and millions of chemicals as potential drugs, the number of possible combinations is astronomical.

“It is very expensive and time-consuming to measure these interactions experimentally,” Baudry said. “But with supercomputers, we can process millions of molecules a day.”

The quick and efficient processing of molecules offers scientists an opportunity to take risks on previously unexamined drug candidates, which could lead to diverse and innovative classes of drugs.

“Before, we threw away a lot of information because molecules did not have a preferred profile,” Baudry said. “Now, every molecule can be examined without worrying about wasting resources.”

The researchers have already started work to launch the research into reality through a new collaboration supported by the National Institutes of Health. The project team plans to put the computational development to work on ORNL supercomputers to look for chemicals that could treat prostate cancer. The research is funded by a NIH Clinical Translational Science Award, which was awarded to Georgetown and Howard Universities and includes ORNL, Med/Star Health and the Washington D.C. Veterans Affairs Medical Center as key partners.

“Our development work is the computational equivalent of building the Saturn V rocket,” Baudry said. “Now we want to fly it to the moon.”

Funding for the initial development work was provided by ORNL’s Laboratory Directed Research and Development program. The University of Tennessee and the Joint UT/ORNL Genome Sciences and Technology graduate program also supported the work. The research team included Barbara Collignon, Roland Schulz and Jeremy Smith of the UT-ORNL Center for Molecular Biophysics. The three researchers as well as Baudry are also affiliated with the University of Tennessee’s Department of Biochemistry and Cellular and Molecular Biology.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

Morgan McCorkle | Newswise Science News
Further information:
http://www.ornl.gov

More articles from Life Sciences:

nachricht How our cellular antennas are formed
22.01.2019 | Université de Genève

nachricht Bifacial Stem Cells Produce Wood and Bast
22.01.2019 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

How our cellular antennas are formed

22.01.2019 | Life Sciences

Proposed engineering method could help make buildings and bridges safer

22.01.2019 | Architecture and Construction

Bifacial Stem Cells Produce Wood and Bast

22.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>