Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Super” Enzyme Protects Against Dangers of Oxygen

30.01.2013
Just like a comic book super hero, you could say that the enzyme superoxide dismutase (SOD1) has a secret identity.

Since its discovery in 1969, scientists believed SOD1’s only role was to protect living cells against damage from free radicals. Now, researchers at the Johns Hopkins Bloomberg School of Public Health have discovered that SOD1 protects cells by regulating cell energy and metabolism. The results of their research were published January 17, 2013, in the journal Cell.

Transforming oxygen to energy for growth is key to life for all living cells, which happens either through respiration or fermentation. When oxygen is plentiful, respiration normally takes over; however certain cells fail to respire in spite of abundant oxygen and instead ferment, leading to uncontrolled cell growth—a hallmark of cancer.

Using the baker’s yeast S. cerevisiae as well as a human cell line, researchers Valeria C. Culotta, PhD, and colleague Amit Reddi from the Department of Biochemistry and Molecular Biology determined that SOD1 transmits signals from oxygen and glucose to repress respiration. This signaling is accomplished through SOD1 protection of another enzyme known as casein kinase 1-gamma (CK1ã), which is an important key to the switch between respiration and fermentation.

“SOD enzymes are present in virtually all living cells, from the most ancient bacteria to every cell in the human body,” explained Culotta. “I’ve been telling my students to think of SOD1 as a superhero. It not only defends cells from damaging free radicals, but also has a secret life as a guardian of cell energy and metabolism.”

“Our findings provide new clues as to how rapidly dividing cells—from yeast to human cancers—may escape the urge to respire and instead choose fermentation to promote rapid growth,” said Culotta.

“SOD1 has long been recognized as an important enzyme in protection from oxidative stress, but this work establishes an important new function for the enzyme in cellular metabolism,” said Vernon Anderson, PhD, of the National Institutes of Health’s National Institute of General Medical Sciences, which partly funded the study. “The results provide important insight into how SOD1 and oxygen radicals push cellular energy metabolism towards fermentation, a feature of some disease states, including cancer.”

“SOD1 Integrates Signals from Oxygen and Glucose to Repress Respiration” was written by Amit R. Reddi and Valeria C. Culotta.

The research was supported by the JHU National Institute for Environmental Health Sciences Center and from the National Institutes of Health grants GM050016 and GM093550.

Image courtesy of artist Clem Cizewski and Valeria Culotta.

Media contact: Tim Parsons, director of Public Affairs, at 410-955-7619 or tmparson@jhsph.edu

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>