Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Super” Enzyme Protects Against Dangers of Oxygen

30.01.2013
Just like a comic book super hero, you could say that the enzyme superoxide dismutase (SOD1) has a secret identity.

Since its discovery in 1969, scientists believed SOD1’s only role was to protect living cells against damage from free radicals. Now, researchers at the Johns Hopkins Bloomberg School of Public Health have discovered that SOD1 protects cells by regulating cell energy and metabolism. The results of their research were published January 17, 2013, in the journal Cell.

Transforming oxygen to energy for growth is key to life for all living cells, which happens either through respiration or fermentation. When oxygen is plentiful, respiration normally takes over; however certain cells fail to respire in spite of abundant oxygen and instead ferment, leading to uncontrolled cell growth—a hallmark of cancer.

Using the baker’s yeast S. cerevisiae as well as a human cell line, researchers Valeria C. Culotta, PhD, and colleague Amit Reddi from the Department of Biochemistry and Molecular Biology determined that SOD1 transmits signals from oxygen and glucose to repress respiration. This signaling is accomplished through SOD1 protection of another enzyme known as casein kinase 1-gamma (CK1ã), which is an important key to the switch between respiration and fermentation.

“SOD enzymes are present in virtually all living cells, from the most ancient bacteria to every cell in the human body,” explained Culotta. “I’ve been telling my students to think of SOD1 as a superhero. It not only defends cells from damaging free radicals, but also has a secret life as a guardian of cell energy and metabolism.”

“Our findings provide new clues as to how rapidly dividing cells—from yeast to human cancers—may escape the urge to respire and instead choose fermentation to promote rapid growth,” said Culotta.

“SOD1 has long been recognized as an important enzyme in protection from oxidative stress, but this work establishes an important new function for the enzyme in cellular metabolism,” said Vernon Anderson, PhD, of the National Institutes of Health’s National Institute of General Medical Sciences, which partly funded the study. “The results provide important insight into how SOD1 and oxygen radicals push cellular energy metabolism towards fermentation, a feature of some disease states, including cancer.”

“SOD1 Integrates Signals from Oxygen and Glucose to Repress Respiration” was written by Amit R. Reddi and Valeria C. Culotta.

The research was supported by the JHU National Institute for Environmental Health Sciences Center and from the National Institutes of Health grants GM050016 and GM093550.

Image courtesy of artist Clem Cizewski and Valeria Culotta.

Media contact: Tim Parsons, director of Public Affairs, at 410-955-7619 or tmparson@jhsph.edu

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Good preparation is half the digestion
15.11.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht How the gut ‘talks’ to brown fat
16.11.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

UNH scientists help provide first-ever views of elusive energy explosion

16.11.2018 | Physics and Astronomy

How the gut ‘talks’ to brown fat

16.11.2018 | Life Sciences

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>