# Forum for Science, Industry and Business

Search our Site:

## Sugar high for bees

13.10.2011
A field of flowers may seem innocuous — but for the birds and bees that depend on it for sustenance, that floral landscape can be a battlefield mined with predators and competitors. The more efficient a pollinator is in feeding, the less chance it has of becoming food itself.

Now mathematicians at MIT have found that efficient feeding depends on how sugary a flower’s nectar is, and whether an animal dips or sucks the nectar out. The researchers found that animals such as bees, which probe with their tongues, are “viscous dippers,” and are most efficient when feeding on more sugary, or viscous, nectar. Suction feeders, such as birds and butterflies that draw nectar up through tubes, do their best when sucking up thinner, less sugary nectar.

The difference, says John Bush, a professor of applied mathematics, may point to a co-evolutionary process between flowers and their pollinators.

“Do the flowers want a certain type of bug or bird to pollinate them? And are they offering up the nectar of their preferred pollinator?” Bush asks. “It’s an interesting question whether there’s a correlation between the morphology of the plant and the morphology of the insect.”

The researchers published their results in a recent issue of the Proceedings of the National Academy of Sciences.

While Bush is not a biologist, he says curiosities in nature, including nectar feeding, pose fascinating challenges for mathematicians. As he sees it, nectar feeding is a classic example of optimization in nature: The sweeter the nectar, the more energy it delivers, but the more energy it takes to transport. The optimal sugar concentration shifts according to how the fluid is taken up.

As a large-scale analogy, Bush says it’s more efficient to suck up sugar water than molasses through a straw. Conversely, it’s more effective to dip a spoon in and out of honey versus juice. There’s an ideal viscosity for a given uptake mechanism, an optimization puzzle that Bush says is tailored for mathematics.

The birds and the bees

To get at this puzzle, Bush and his colleagues analyzed data from previous papers on nectar-feeding species, which include bats, birds, bees and butterflies. Most papers described two kinds of nectar-drinking mechanisms: active suction, whereby butterflies and moths suck nectar up through long, narrow tubes, or probosci; and passive suction, in which hummingbirds and sunbirds draw nectar up in their tongues via capillary action.

The team compiled the papers’ data and found that both groups of suction feeders were most efficient at taking up the same concentration — 33 percent — of sugar in nectar.

Video: Watch the animals feed on the PNAS website
The researchers did the same for viscous dippers: species such as ants, bees and bats, which extract nectar by dipping their tongues in and out of flowers. For these dippers, they found the ideal sugar concentration was 52 percent, demonstrating a preference among these species for nectar that’s much more viscous, and sweeter, than their sucking counterparts.

Going a step further, Wonjung Kim, a graduate student of mechanical engineering and lead author of the paper, took an experimental approach, studying live bees in the lab. Kim collected several bees from around MIT and kept them in a box lined with paper towels soaked in a sugar solution. Kim filmed the bees with a high-speed camera, confirming that the insects did indeed dip their tongues in the syrupy surface.

Going with the flow

Bush and Kim plan to examine the ways in which other species drink, in order to model more small-scale fluid dynamics. One target, Bush says, is a certain desert lizard that “drinks” through its skin. The lizard simply has to step in a puddle of water, and an intricate system of cracks in its skin soaks up moisture — a useful trait in extremely dry environments.

“People are now interested in moving around small volumes of fluid for microfluidic applications,” Bush says. “It’s clear that nature has been solving these problems for millions of years. Animals have learned how to efficiently navigate, transport and manipulate water. So there’s clearly much to learn from them in terms of mechanisms.”

Written by: Jennifer Chu, MIT News Office

Further information:
http://www.mit.edu

Further reports about: Butterflies fluid dynamic pollinators sugar viscous dippers

### More articles from Life Sciences:

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

### Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

### Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

### Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

### Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

### Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige