Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar brings a lot of carbon dioxide into the deeper sea

19.03.2020

The oceans are a very important reservoir for carbon in the system of the earth. However, many aspects of the marine carbon cycle are still unknown. Scientists from Bremen and Bremerhaven now found that sugar plays an important role in this process. At the same time, the sweet energy source is important for the ecosystem of the oceans.

In the sunlit surface layer of the ocean, photosynthetic microalgae such as diatoms convert more carbon dioxide into biomass than Earth’s tropical forests.


Coscinodiscus wailesii is a microalgae belonging to the diatoms, which form algal blooms and produce substantial amounts of polysaccharides in energy stores, cell walls and as exudates.

Max Planck Institute for Marine Microbiology/C. Robb


Algae samples from deeper water of the Arctic ocean layers were gained by using these in-situ-pumps

Max Planck Institute for Marine Microbiology/S. Becker

Like land plants, diatoms sequester carbon dioxide into polymeric carbohydrates – in other words: into long-chained sugars. However, it has proven difficult to quantify how much carbon dioxide can be stored in the global oceans throughout this process.

This gap of knowledge sparked the interest of the research group Marine Glycobiology, which is located at the Max Planck Institute of Marine Microbiology and the MARUM, Center for Marine Environmental Sciences at the University of Bremen and cooperates with the Alfred Wegener Institute for Polar and Marine Research.

To close this gap, the scientists utilized a recently developed enzymatic assay to dissect photosynthetic microalgae and measure concentrations of the long-chained sugar laminarin, an important energy source for microalgae including diatoms.

Laminarin fixes carbon dioxide

Based on microalgae obtained from the Arctic, Atlantic, and Pacific Oceans and the North Sea, the researchers estimated that this biomass is on average composed of 26 percent laminarin. “This amount suggests that photosynthesis in the surface ocean produces on average twelve gigatons of carbon annually in the form of algal laminarin” says Stefan Becker, first author of the study, published in the scientific journal PNAS in March 2020.

“This is a large amount, considering that, according to the Global Carbon Budget 2019, humans released 11.5 gigatons of carbon during 2018.” However, only a small part of the carbon bound by laminarin is permanently removed from the atmosphere – a large part is subsequently released again through natural processes. In total, the oceans permanently absorbed around 2.6 gigatons of carbon in 2018. “Yet, our findings indicate that sugars like laminarin are also important for the permanent fixation of carbon in the sea,” says Becker.

Furthermore the scientists found that laminarin comprises as much as 50 percent of the organic carbon in sinking diatom-containing particles. “Thus laminarin plays a central role in carbon transfer from surface waters to the deeper ocean,” says Jan-Hendrik Hehemann, leader of the research group Marine Glycobiology. “Whether laminarin is fixed in deep waters is an important further question that we will address in the future”.

Variation during the day

In addition, as microalgae represent the all-important base of the marine food web, the findings show that laminarin occupies a prominent position in global ocean ecology. The researchers from Bremen found out, that the amount of sugar in microalgae is high, but not always the same.

“The concentration in algal cells increased markedly during the day and decreased over the night, in analogy to the seasonal storage of energy in starchy roots and fruits of land plants”, says Hehemann. “This may have a major impact on the feeding behavior of marine animals, as the time of day determines how much sugar – and therefore energy – animals get when they eat.”

Collectively, these findings highlight the prominent ecological role and biochemical function of the sugar laminarin in the ocean.

Wissenschaftliche Ansprechpartner:

Dr. Jan-Hendrik Hehemann
MARUM MPG Bridge Group Marine Glycobiology
Max Planck Institute for Marine Microbiology, Bremen
Telefon: +49 421 2028-736
E-Mail: jheheman@mpi-bremen.de

Katrin Matthes
Press Officer
Max Planck Institute for Marine Microbiology, Bremen
Telefon: +49 421 2028-947
E-Mail: kmatthes@mpi-bremen.de

Originalpublikation:

DOI: 10.1073/pnas.1917001117

Dr. Fanni Aspetsberger | Max-Planck-Institut für Marine Mikrobiologie
Further information:
https://www.mpi-bremen.de

More articles from Life Sciences:

nachricht Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination
13.07.2020 | Kanazawa University

nachricht Researchers present concept for a new technique to study superheavy elements
13.07.2020 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>