Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successful nurturing of young talent

17.01.2012
Viktoria Däschlein-Gessner recently conducted research in California, before opting to join the University of Würzburg. With an Emmy Noether grant in the bag, she is setting up her own junior research group at the Institute of Inorganic Chemistry and is on the lookout for new and interesting substances.

Her high school tutor had actually advised her against studying chemistry, saying that it was not a subject for a woman, but if she really must study it then she should at least set her sights on becoming a teacher. However, this did not stop Viktoria Däschlein-Gessner from enrolling on a chemistry course at the University of Marburg. A degree course.

Now the 29-year-old lectures and conducts research at the University of Würzburg’s Institute of Inorganic Chemistry. Working under Professor Holger Braunschweig, she is in the process of setting up her own junior research group and pursuing her postdoctoral qualification (habilitation). The German Research Foundation (DFG) is supporting her in this venture with a grant of around one million euros over the next five years within the framework of its Emmy Noether Program. The program is intended to provide talented young scientists with the opportunity to achieve scientific independence more rapidly; by running their own junior research groups, postdoctoral researchers should acquire the qualification to become a university lecturer, according to the DFG’s description of the program.

Viktoria Däschlein-Gessner works with molecules that have a nucleus usually containing a reactive carbon atom that possesses a high negative charge. She combines these with various types of so-called “electron-drawing groups”, which enable stabilization of the products, making it possible to research their properties.

On the quest for stable systems

“We are practicing basic chemistry,” she says. “What we are concerned with is making reactive substances manageable so that we can work with them further.” This is not always that easy for the very reason that these substances react so quickly with their environment and can head in directions that provide for new surprises. In such cases, the chemist has to reach for her bag of tricks. The experiments are then conducted in a special glove box, separated from normal ambient air in a pure inert gas atmosphere, or in extreme minus degrees.

“Our goal is to develop systems that are stable,” says Viktoria Däschlein-Gessner. Once this has been achieved, the search for the reactions that occur there will begin – in conjunction with the question: Where can we go from here with these reactions? Should the work be successful, one possible outcome might be a metal complex that serves as a catalyst and therefore makes the transition from research to application. In principle, however, for the researcher it is all about “understanding reactivity”. A practical application would an ideal consequence of the insights obtained.

About the person

Viktoria Däschlein-Gessner grew up near Würzburg and attended school in Lauda-Königshofen. In 2002, she started a chemistry degree course in Marburg, before switching, in 2004, to the University of Würzburg for the advanced stage of her studies. She obtained a doctorate at TU Dortmund University with a thesis on lithiumorganic compounds; she then spent some time conducting postdoctoral research at the University of California in Berkeley (USA). And now she is back in Würzburg.

“Würzburg’s chemistry department enjoys a good reputation, internationally as well,” she says. And nowhere else in Germany is there an inorganic chemistry department as large as the one headed by Holger Braunschweig, she adds. What is more, the institute’s equipment is outstanding, especially as regards the large apparatus. A spectral analysis with the help of nuclear magnetic resonance spectroscopy, or an x-ray structure analysis – not a problem at the Institute of Inorganic Chemistry.

However, Viktoria Däschlein-Gessner does not have all that much time to work in the laboratory at the moment. The task of setting up her own research group is taking its toll. With a load of meetings, paperwork, and administrative chores to deal with, the chemist sometimes finds herself unable to conclude an experiment she has prepared in the extractor hood because she is called away for other urgent matters. This will soon be over, she hopes. Once the team has established itself and the “start-up phase” has been completed. After all, she still has research to do for her habilitation.

Why did she choose chemistry in the first place? “I have always enjoyed asking questions. And in chemistry you receive the most answers,” says Viktoria Däschlein-Gessner. Today, after a good ten years of studying and research, she still finds the world of atoms and molecules fascinating. “You always come across new surprises in chemistry,” she says.

Contact

Dr. Viktoria H. Däschlein-Gessner, T: +49 (0)931 31-84163,
e-mail: VGessner@uni-wuerzburg.de

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

Further reports about: CHEMISTRY Molecules electron-drawing groups gas atmosphere inorganic

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>