Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Substitute for rare earth metal oxides

05.12.2018

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.


Embedding phosphorescent caesium metal clusters (red octahedrons) in organic liquid crystals (blue rings) produces hybrid nanomaterials that emit intense red light when irradiated with UV light.

Photo: University of Stuttgart/ IOC

However, due to their limited availability from natural resources located outside Europe rare earth oxides are considered as strategic minerals.

Therefore, alternative materials are highly desirable for energy efficient lighting and other applications.

Starting in January 2019 the Deutsche Forschungsgemeinschaft (DFG) and the French Agence Nationale de la Recherche (ANR) will be funding the Franco-German joint project SNAPSTER (Supramolecular nanomaterials containing phosphorescent transition metal clusters), which involves three research teams from the University of Stuttgart and the University of Rennes.

The aim of the SNAPSTER project is the integration of inorganic, phosphorescent metal clusters in organic liquid crystals via supramolecular interactions.

The liquid crystals are acting as isolating shell and improve the photophysical properties of the resulting hybrid materials and their chemical stability.

The emission wavelengths can be tailored by suitable choice of the metal cluster. SNAPSTER is based on the longstanding complementary expertise of the collaborating teams regarding organic material synthesis and characterization (Sabine Laschat, Stuttgart), inorganic cluster synthesis, photophysical characterization and preparation of hybrid materials (Yann Molard, Rennes) and the integration of these novel materials into electronic devices (Emmanuel Jacques, Rennes).

Wissenschaftliche Ansprechpartner:

Sabine Laschat, Institut für Organische Chemie, Universität Stuttgart,
sabine.laschat@oc.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

More articles from Life Sciences:

nachricht Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | ETH Zurich

nachricht New molecular blueprint advances our understanding of photosynthesis
15.02.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>