Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017

Bacteria remove nitrogen that leads to over-fertilization of coastal waters

When it comes to oysters and their role in reducing nutrient pollution, a new study by researchers at William & Mary's Virginia Institute of Marine Science gets right to the guts -- and the shell -- of the matter.


This is an image of a fringing oyster reef near one of the team's study sites in North Carolina.

Credit: © A. Smyth

The study, in the September 29 issue of PLoS ONE, is the first to identify and quantify potentially denitrifying bacteria in the oyster gut and shell, and the first to do so using a new computer program that infers bacterial activities based on the sequences of ribosomal RNA genes.

Denitrification is the process by which nitrate and nitrite--compounds that fuel over-fertilization of coastal waters--are reduced to nitrogen gas, which is harmless to aquatic habitats. Excess nitrogen from wastewater treatment plants, farm fertilizers, and other human sources can lead to low-oxygen "dead zones," reduced fisheries harvests, and loss of sea-grass habitat. Chesapeake Bay is one of many ecosystems worldwide that have suffered these impacts.

Lead author on the study is Ann Arfken, a Ph.D. student in the lab of VIMS Associate Professor and co-author BK Song. Other co-authors are Drs. Jeff Bowman of the Scripps Institution of Oceanography and Michael Piehler of the University of North Carolina.

"Most studies addressing denitrification associated with oysters have focused on sediments in and around oyster reefs," says Arfken. "Ours is the first to explore the capability for denitrification by microbiomes living inside and on the oysters themselves." A "microbiome" is the community of microscopic organisms that inhabit each and every living thing, from the mites that dwell amid your eyelashes to the bacteria lodged among tomato roots.

The results of the study have important implications for efforts to reduce nutrient levels in coastal waters through oyster restoration. "We found that oyster shells contain unique microbial communities with higher denitrification activities than sediments," says Song. "It's thus possible to reduce nutrients at the beginning of an oyster restoration project as shell microbiomes are actively removing fixed nitrogen."

A financial and logistical challenge

Recent research shows that microbiomes play a key role in an organism's physiology and ecology, but, says Song, "Exploring the linkage between the genetic make-up and functions of a microbiome has long presented a challenge."

That challenge is both financial and logistical. "Studies of an organism's entire genetic make-up--its genome--are very expensive, and may not work for samples where the contribution from microbes is low," says Song. "As a result, many studies rely on amplicon sequencing of ribosomal RNA genes to identify microbial taxa." This approach is less expensive, but offers limited insight into the metabolic pathways associated with different microbiomes--in this case whether they possess the genes needed for denitrification.

To address these challenges, the team employed a new technique developed by Bowman. Called "PAPRICA"--for PAthway PRediction by phylogenetIC plAcement--it allows researchers to infer metabolic pathways from gene sequences associated with a small subunit of ribosome called16S rRNA.

"We combined a customized genomic database with the PAPRICA program to identify bacteria carrying denitrification genes among the microbiomes associated with oyster guts, shells, and reef sediments," says Song. He explains, "This would be somewhat like distinguishing among different human populations by comparing the number of stomach ailments with the gene needed to digest milk."

The research team then measured rates of denitrification in chambers containing live oysters, oyster shells, or sediments collected near oyster reefs, discovering much higher rates in the chambers holding living oysters and shells. When they compared these rates with the abundance of denitrification genes in the three microbiomes, they saw a strong correlation between high rates of denitrification and a gene sequence called nosZI.

"We found that bacteria carrying nosZI genes are important denitrifiers, and facilitate nitrogen removal in oyster reefs," says Arfken.

The researchers caution, however, that more research is needed. "We have to be careful when inferring denitrification and other metabolic processes from the presence of a gene in a bacterial genome," says Arfken. "These processes are often extremely complex, and require the coordinated expression of several different genes. Moreover, many organisms may carry a gene but not express it," A final challenge, she says, is that "lots of bacteria remain unclassified or have identified genomes that are either incomplete or of low quality."

But the researchers remain optimistic. "We're excited to pursue more studies to further validate the use of gene-based metabolic inferences as a reliable method for assessing the metabolic potential of microbiomes," says Song.

Media Contact

David Malmquist
davem@vims.edu
804-684-7011

 @VIMS_News

http://www.vims.edu 

David Malmquist | EurekAlert!

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>