Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Suggests Immune System Can Boost Nerve Regrowth

04.10.2012
Modulating immune response to injury could accelerate the regeneration of severed peripheral nerves, a new study in an animal model has found. By altering activity of the macrophage cells that respond to injuries, researchers dramatically increased the rate at which nerve processes regrew.

Influencing the macrophages immediately after injury may affect the whole cascade of biochemical events that occurs after nerve damage, potentially eliminating the need to directly stimulate the growth of axons using nerve growth factors. If the results of this first-ever study can be applied to humans, they could one day lead to a new strategy for treating peripheral nerve injuries that typically result from trauma, surgical resection of tumors or radical prostectomy.

“Both scar formation and healing are the end results of two different cascades of biological processes that result from injuries,” said Ravi Bellamkonda, Carol Ann and David D. Flanagan professor in the Wallace H. Coulter Department of Biomedical Engineering and member of the Regenerative Engineering and Medicine Center at Georgia Tech and Emory University. “In this study, we show that by manipulating the immune system soon after injury, we can bias the system toward healing, and stimulate the natural repair mechanisms of the body.”

Beyond nerves, researchers believe their technique could also be applied to help regenerate other tissue – such as bone. The research was supported by the National Institutes of Health (NIH), and reported online Sept. 26, 2012, by the journal Biomaterials.

After injury, macrophages that congregate at the site of the injury operate like the conductor of an orchestra, controlling processes that remove damaged tissue, set the stage for repair and encourage the replacement of cells and matrix materials, said Nassir Mokarram, a Ph.D. student in the Coulter Department of Biomedical Engineering and Georgia Tech’s School of Materials Science and Engineering. Converting the macrophages to a “pro-healing” phenotype that secretes healing compounds signals a broad range of other processes – the “players” in the symphony analogy.

“If you really want to change the symphony’s activity from generating scarring to regeneration of tissue, you need to target the conductor, not just a few of the players, and we think macrophages are capable of being conductors of the healing symphony,” said Mokarram.

Macrophages are best known for their role in creating inflammation at the site of injuries. The macrophages and other immune system components battle infection, remove dead tissue – and often create scarring that prevents nerve regeneration. However, these macrophages can exist in several different phenotypes depending on the signals they receive. Among the macrophage phenotypes are two classes – M2a and M2c – that encourage healing.

Bellamkonda’s research team used an interleukin 4 (IL-4) cytokine to convert macrophages within the animal model to the “pro-healing” phenotypes. They placed a gel that released IL-4 into hollow polymeric nerve guides that connected the ends of severed animal sciatic nerves that had to grow across a 15 millimeter gap to regenerate. The IL-4 remained in the nerve guides for 24 hours or less, and had no direct influence on the growth of nerve tissue in this short period of time.

Three weeks after the injury, the nerve guides that released IL-4 were almost completely filled with re-grown axons. The treated nerve guides had approximately 20 times more nerve regeneration than the control channels, which had no IL-4-treated macrophages.

Research is now underway to develop the technique for determining how soon after injury the macrophages should be treated, and what concentration of IL-4 would be most effective.

“We believe immune cells are the ‘master knobs’ that modulate the biochemical cascade downstream,” Mokarram said. “They are among the ‘first-responders’ to injury, and are involved for almost the whole regeneration process, secreting several factors that affect other cells. With IL-4, we are doing something very early in the process that is triggering a cascade of events whose effects last longer.”

Tissue engineering approaches have focused on encouraging the growth of nerve cells, using special scaffolds and continuous application of nerve growth factors over a period of weeks. Instead, the Bellamkonda group believes that influencing the immune system soon after injury could provide a simpler and more effective treatment able to restore nerve function.

“Beyond neural tissue engineering, the implications of this approach can be significant for other types of tissue engineering,” said Mokarram. “Neural tissue may be just a model.”

As part of their paper, the researchers defined a state they termed “regenerative bias” that predicts the probability of a regenerative outcome. The Bellamkonda group discovered that when it quantified the ratio of healing macrophages to scar-promoting macrophages at the site of injury early after the injury, the ratio – or regenerative bias – predicted whether or not the nerve regenerated after many weeks.

“The significance of this finding is that IL-4 and other factors may be used to make sure the regenerative bias is high so that nerves, and perhaps other tissues, can regenerate on their own after injury,” Bellamkonda said.

The research team also included Alishah Merchant, Vivek Mukhatyar and Gaurangkumar Patel, all from the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

This research was supported by the National Institutes of Health under grants NS44409, NS65109 and 1R41NS06777. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National lnstitutes of Health.

CITATION: Mokarram N, et al., Effect of modulating macrophage phenotype on peripheral nerve repair, Biomaterials (2012), http://dx.doi.org/10.1016/j.biomaterials.2012.08.050

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 309
Atlanta, Georgia 30308 USA
Media Relations Contact: John Toon (404-894-6986)(jtoon@gatech.edu).
Writer: John Toon

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>