Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows how young genes become essential for life

07.06.2013
Researchers from UConn and other institutions in the U.S. and abroad have shown how a relatively young gene can acquire a new function and become essential to an organism's life.

Using a combination of techniques, including phylogenetics, molecular biology, and video microscopy, the scientists show that a novel essential gene in fruit flies, born via the process of gene duplication, is only 15 million years old and yet has acquired, in a stepwise fashion, a new job so important that the flies can't live without it. The study is published in the June 6 edition of Science.


This is imagery of cells dividing, recorded from video microscopy. The image on the left depicts normal cell division in a fruit fly cell. The cell on the right has had the Umbrea gene removed, and has failed to divide normally, resulting in cell death.

Credit: Photos courtesy Barbara Mellone

"The majority of these genes are not going to acquire essential functions" of genes that, like the one they studied, have been duplicated, says Barbara Mellone, assistant professor of molecular and cell biology in UConn's College of Liberal Arts and Sciences. "But the interaction network is completely rewired for this gene."

Mellone and her colleagues at the University of Washington, the Fred Hutchinson Cancer Research Center in Seattle, and the University of Munich traced the evolutionary steps by which a gene from the well-known fruit fly Drosophila melanogaster, known as Umbrea, acquired its essential role. The gene is vital to chromosome segregation, the process of splitting genetic material when cells divide to generate more cells, tissues, and organisms.

"The genus Drosophila offers an unprecedented system in which to study gene evolution because of the detailed evolutionary and genomic data available," says Mellone. "Learning about how new genes acquire new functions is crucial to understanding how whole genomes undergo functional innovation, which is what is needed for new traits to appear in populations that natural selection can act upon."

What puzzled the scientists is that Umbrea plays the role of strengthening the connections between chromosomes, making sure that chromosome segregation happens correctly. And although it is also present in other species of fruit fly, it's not essential in all of them. How then could a gene that has only been around for a fraction of this species' history have acquired such an essential role?

To understand this paradox, the researchers used gene sequencing to understand the gene's history and captured video of cells with Umbrea removed dividing under a microscope in Mellone's laboratory. Their methods showed that after its birth, Umbrea was lost in some of the species, but in one species, Drosophila melanogaster, cells without it failed to segregate chromosomes correctly, confirming its critical role.

But their results also showed that several stepwise changes led to Umbrea's current-day time in the limelight: it lost its previous, nonessential function; the network of proteins it interacts with was completely rewired, and it acquired new, "tail" domains on the ends of its sequence that allowed it to relocate to the centromere, a structure present on all chromosomes in all species, necessary for genome segregation during cell division.

"This gene emerged and wasn't going either way, toward or away from essential function," says Mellone. "Then something happened elsewhere to help make it essential."

The researchers argue that although most duplicated genes either become non-functional or are simply lost, keeping some of them around might benefit cells in the long run.

"Centromere proteins experience rapid evolution in many organisms, including humans, in a constant 'arms race' that exists to maintain the equal segregation of genetic traits," says Mellone.

So if the genes involved in genome partitioning are evolving so fast, then perhaps it's a good idea to keep other, nonfunctional genes around – those that can acquire new essential functions when necessary.

The scientists suggest that this could change the way scientists think about other biological processes that may require recurrent genetic innovation to adapt to new challenges.

Christine Buckley | EurekAlert!
Further information:
http://www.uconn.edu

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>