Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows how aging impairs immune response

18.07.2012
Researchers at Albert Einstein College of Medicine of Yeshiva University have uncovered one of the mechanisms by which aging may compromise the ability of the immune system to fight infections and respond to vaccines.

The study, conducted in aging mice, shows that administering antioxidants may help reverse this loss of immune function. The findings were published online this month in the journal Cell Reports.

"Aging is known to affect immune function, a phenomenon known as immunosenescence, but how this happens is not clear," said study leader Laura Santambrogio, M.D., Ph.D. , associate professor of pathology and of microbiology & immunology at Einstein. "Our study has uncovered several ways in which aging can worsen the body's overall ability to mount an effective immune response."

All cells generate chemicals called free radicals as a normal part of metabolism. These highly reactive, unstable molecules can readily damage proteins, lipids and other cellular components through oxidation (the reaction between oxygen and substances it comes in contact with). Cells keep "oxidative stress" in check by producing several enzymes that are scavengers of free radicals. But in aging, increased production of free radicals coupled with cells' decreased production of antioxidant enzymes cause a buildup of damaged proteins and other molecules that can be toxic to cells.

The current study is the first to examine whether age-related oxidative stress compromises the function of a type of immune cell called dendritic cells. "Dendritic cells are known as the 'sentinels of the immune system' and alert the rest of the immune system to the presence of microbial invaders," explained Dr. Santambrogio. "When you are exposed to viruses or bacteria, these cells engulf the pathogens and present them to the immune system, saying in effect, 'There's an infection going on, and here is the culprit—go get it.'"

Dr. Santambrogio, in collaboration with Einstein colleagues Fernando Macian-Juan, M.D., Ph.D. , and Ana Maria Cuervo, M.D., Ph.D. , isolated dendritic cells from aging mice and found that oxidation-damaged proteins had accumulated in those cells and had caused harmful effects. For example, oxidatively modified proteins hampered the function of endosomes, the cell's organelle where pathogens are inactivated.

When the mice were injected with a potent antioxidant in the abdominal cavity daily for two weeks, some of the effects of oxidative stress were reversed. This finding has implications for designing vaccines or therapies for humans, especially the elderly, whose weakened immune systems increase their susceptibility to infections and cancer, and reduces vaccine effectiveness. "Many elderly people respond very poorly to vaccination, so perhaps a cycle of therapy with antioxidants before vaccination might improve their immune response to vaccines," Dr. Santambrogio noted.

The paper is titled "Age-related Oxidative Stress Compromises Endosomal Proteostasis." In addition to Dr. Santambrogio, Dr. Macian-Juan, associate professor of pathology, and Dr. Cuervo, professor of developmental and molecular biology, of anatomy and structural biology and of medicine , other Einstein contributors were Elvira Cannizzo PhD candidate, Cristina Clement, Ph.D.; Kateryna Morozova, Ph.D.; Rut Valdor, Ph.D.; Susmita Kaushik PhD, Larissa Almeida PhD candidate, Carlo Follo PhD, and Ranjit Sahu, Ph.D.

The study was supported by several grants from the National Institutes of Health (NIH), including from the National Institute of Allergy and Infectious Diseases (AI48833), the National Institute on Aging (AG031782), the National Institute of Diabetes and Digestive Diseases (DK041918), and a NIH Fogarty Geographic Infectious Diseases Training Grant (D43TW007129).

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation’s premier centers for research, medical education and clinical investigation. During the 2011-2012 academic year, Einstein is home to 724 M.D.; students, 248 Ph.D;. students, 117 students in the combined M.D./Ph.D.; program, and 368 postdoctoral research fellows;. The College of Medicine has 2,522 full time faculty members located on the main campus and at its clinical affiliates;. In 2011, Einstein received nearly $170 million in awards from the NIH. This includes the funding of major research centers; at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Its partnership with Montefiore Medical Center, the University Hospital and academic medical center for Einstein, advances clinical and translational research to accelerate the pace at which new discoveries become the treatments and therapies that benefit patients. Through its extensive affiliation network involving Montefiore, Jacobi Medical Center) – Einstein’s founding hospital, and five other hospital systems in the Bronx, Manhattan, Long Island and Brooklyn, Einstein runs one of the largest post-graduate medical training programs in the United States, offering approximately 155 residency programs to more than 2,200 physicians in training. For more information, please visit www.einstein.yu.edu; and follow us on Twitter @EinsteinMed.

Kim Newman | EurekAlert!
Further information:
http://www.einstein.yu.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>