Study Reveals How Snakes Slither on Flat Terrain

Their findings, which appear in the latest issue of the Proceedings of the National Academy of Sciences, run counter to previous studies that have shown snakes move by pushing laterally against rocks and branches.

“We found that snakes’ belly scales are oriented so that snakes resist sliding toward their tails and flanks,” said the paper’s lead author, David Hu, a former post-doctoral researcher at NYU’s Courant Institute of Mathematical Sciences and now an assistant professor in Georgia Tech’s George W. Woodruff School of Mechanical Engineering.

“These scales give the snakes a preferred direction of motion, which makes snake movement a lot like that of wheels, cross-country skis, or ice skates. In all these examples, sliding forwards takes less work than does sliding sideways.”

The study’s other co-authors were Jasmine Nirody and Terri Scott, both undergraduate researchers at NYU, Michael Shelley, a professor of mathematics and neural science and the Lilian and George Lyttle Professor of Applied Mathematics at Courant.

The study centered on the frictional anisotropy—or resistance to sliding in certain directions—of a snake’s belly scales. While previous investigators had suggested that the frictional anisotropy of these scales might play a role in locomotion over flat surfaces, the details of this process had not been understood.

To explore this matter, the researchers first developed a theoretical model of a snake’s movement. The model determined the speed of a snake’s center of mass as a function of the speed and size of its body waves, taking into account the laws of friction and the scales’ frictional anisotropy. The model suggested that a snake’s motion arises by the interaction of surface friction and its internal body forces.

To confirm movement as predicted by the model, the researchers then measured the sliding resistance of snake scales and monitored the movement of snakes through a series of experiments on flat and inclined surfaces. They employed video and time-lapse photography to gauge their movements.

The results showed a close relationship between what the model predicted and the snakes’ actual movements. The theoretical predictions of the model were generally consistent with the snakes’ actual body speeds on both flat and inclined surfaces.

Media Contact

Abby Vogel Newswise Science News

More Information:

http://www.gatech.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors