Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals enzyme function, could help find muscular dystrophy therapies

10.01.2012
Study reveals function of glycosylating enzyme involved in muscular dystrophy, brain development and infection by arenaviruses such as Lassa fever; ability to assay enzyme activity could help screen potential muscular dystrophy therapies

Researchers at the University of Iowa have worked out the exact function of an enzyme that is critical for normal muscle structure and is involved in several muscular dystrophies. The findings, which were published Jan. 6 in the journal Science, could be used to develop rapid, large-scale testing of potential muscular dystrophy therapies.

The enzyme, called LARGE, adds a critical sugar chain onto an important membrane protein called dystroglycan. This sugar chain acts like a glue allowing dystroglycan to attach to other proteins and by doing so, reinforce cell membranes in many tissues including muscle and brain. Dystroglycan does not function properly without this sugar link, and that malfunction causes muscular dystrophies and brain abnormalities.

"LARGE is a critical enzyme involved in maintaining muscle cell viability," says Kevin Campbell, Ph.D., professor and head of molecular physiology and biophysics at the UI Carver College of Medicine and a Howard Hughes Medical Institute investigator. "It adds on a unique sugar chain that allows the muscle cell to protect its membrane from injury. By figuring out the function of this enzyme we've finally identified this critical sugar link."

The new study shows that the enzyme activity of LARGE has two specific sugar-adding functions -- it transfers the sugars xylose and glucuronic acid. Using nuclear magnetic resonance analysis (NMR), the team was also able to determine the precise structure of the sugar chain produced by LARGE, which has not been seen before.

The study confirmed that this unique sugar chain is responsible for dystroglycan's ability to attach to its protein partners, which include laminin in muscle and neurexin in brain.

In addition to LARGE, several other enzymes are involved in building the important dystroglycan sugar chain, and mutations in all these enzymes cause congenital muscular dystrophies collectively known as secondary dystroglycanopathies. These disorders include Fukuyama Congenital Muscular Dystrophy, Walker-Warburg Syndrome, Muscle-Eye-Brain disease, Congenital Muscular Dystrophy 1C and 1D, and limb-girdle muscular dystrophy 2I.

However, in all cases, the part of the sugar chain that is critical for dystroglycan function is the part that is added by LARGE. Furthermore, work from Campbell's lab has shown that boosting LARGE activity in cells from patients with these types of muscular dystrophies is sufficient to restore dystroglycan function and overcome the defects in the cells.

By understanding what the LARGE enzyme does, the researchers have now been able to develop a test, or assay, to monitor enzyme activity.

"It's exciting that we now have this enzyme assay, which could be used in a large-scale high-throughput screen for drugs that increase (or decrease) LARGE activity," Campbell says.

Using the assay to identify compounds that boost LARGE activity might lead to potential treatments for the secondary dystroglycanopathies. The assay could also be used to look at variations in LARGE activity in patients' cells. This may help identify patients who are affected by these LARGE-related muscular dystrophies.

LARGE activity is important in other diseases

The unusual sugar chain that LARGE builds onto dystroglycan is also implicated in other diseases. A group of viruses that includes Lassa fever appear to require the sugar chain to infect cells. Lassa fever is a hemorrhagic illness that can cause serious disease and death.

Now that the researchers have determined the make-up of the unusual sugar, Campbell suggests that it will be possible to make and test it as a therapeutic to block or reduce infection by these viruses.

Campbell is also excited by another aspect of the Lassa fever link. A genome-wide study of populations in West Africa where Lassa fever is endemic suggests that the LARGE gene may be modified in this population. Campbell speculates that altering LARGE activity might provide some protection against infection by the Lassa fever virus. In the future, he hopes to use his team's newly developed enzyme assay to investigate if LARGE activity is altered in this population.

In addition to Campbell, the study team included Kei-ichiro Inamori, Ph.D., and Takako Yoshida-Moriguchi, Ph.D., who were co-first authors of the study, and Yuji Hara, Ph.D., Mary Anderson, and Liping Yu, Ph.D.

The study was funded in part by a National Institutes of Health grant for the Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center at the UI.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>