Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study pinpoints why some microbial genes are more promiscuous than others

17.03.2011
Bacteria more likely to adopt 'loner' genes than genes that are well-connected, study finds

A new study of more than three dozen bacteria species — including the microbes responsible for pneumonia, meningitis, stomach ulcers and plague — settles a longstanding debate about why bacteria are more likely to steal some genes than others.

While most organisms get their genes from their parents just like people do, bacteria and other single-celled creatures also regularly pick up genes from more distant relatives. This ability to 'steal' snippets of DNA from other species — known as lateral gene transfer — is responsible for the rapid spread of drug resistance among disease-causing bacteria.

"By understanding why some genes are more likely to spread from one species to the next, we can better understand how new virulent bacterial strains emerge," said co-author Tal Pupko, a visiting scientist at the National Evolutionary Synthesis Center in Durham, NC.

Scientists have proposed several theories to explain why some bacterial genes are more likely to jump into other genomes. One theory, Pupko explained, is that it depends on what the gene does in the cell.

Genes involved in core functions, like converting RNA into protein, are much less likely to make the leap. "If a species already has the basic molecular machinery for transcription and translation, there's no advantage to taking in another set of genes that do the same thing," Pupko said.

Other studies suggest it's not what the gene does that matters, but how many proteins it interacts with – a network researchers have dubbed the 'interactome.' Genes involved in transcription and translation, for example, must work in concert with many partners to do their job.

To find out which factor was more important — what a gene does, or how connected it is — the researchers looked for evidence of gene transfer in more than three dozen bacteria species, including a number of pathogens known to cause illness in people.

When they compared proteins with similar degrees of connectivity, the importance of gene function disappeared. "The reason some proteins are rarely acquired is because of how connected they are, not because of their function," said co-author Uri Gophna of Tel Aviv University.

Genes whose protein products rely on many partners to do their job are less likely to work properly in a new host, Gophna said. Transferring a highly connected gene into a new host is like importing a fax machine into a remote village, he explained. "While the machine itself is potentially useful, it needs a number of additional connections to work – electricity, a phone line, a supply of paper, possibly a technician. If one of these is missing the machine becomes useless and ends up as junk."

Bacteria are more likely to adopt 'loner' genes than genes that are well-connected, the authors added. "If you think of the cell like a machine, it's much more difficult to exchange the hub of a machine than some of its accessories," Pupko said.

The scientists describe their findings in the April 2011 issue of Molecular Biology and Evolution.

Ofir Cohen of Tel Aviv University was also an author on this study.

CITATION: Cohen, O., U. Gophna, et al. (2011). "The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer." Molecular Biology and Evolution 28(4): 1481-1489. First published online December 13, 2010 doi:10.1093/molbev/msq333

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Life Sciences:

nachricht Scientists discovered 20 new gnat species in Brazil
24.09.2018 | Estonian Research Council

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>