Study offers clues to beating hearing loss

The Leeds team has discovered that the myosin 7 motor protein – found in the tiny hairs of the inner ear that pick up sound – moves and works in a different way from many other myosins.

Dr Michelle Peckham from the University of Leeds' Faculty of Biological Sciences says: “We're really excited by this discovery as it could lead to new insights into certain forms of deafness. Mutations in this protein have been linked to hearing loss, particularly of the type connected to Usher syndrome, which is a form of degenerative deaf-blindness.”

There are around 40 myosin motor proteins in the human body, the most familiar of which is the type of myosin found in skeletal and heart muscle. But all cells have many different kinds of myosin.

Dr Peckham says: “What's exciting about our findings is that we have found that, unlike muscle myosins, which have two heads, myosin 7 only has one. What's more, for the first time we've found how this myosin can be switched on and switched off. When switched off, the tip of its tail curls round and contacts the head, and switched on this contact is broken and the myosin stretches out. This knowledge should help inform any further studies into how a mutation can create problems in hearing.”

Follow-up studies could include a more detailed analysis of the role of myosin 7 in Usher syndrome, an inherited genetic condition, which affects hearing, sight and balance. It can vary in its severity; in some cases a child may be born deaf and their sight may deteriorate during childhood, whilst in others the syndrome can go undetected into the teens when hearing and sight usually begins to deteriorate.

There is no cure for Usher syndrome and sufferers are usually offered assistance in managing their disabilities.

Dr Peckham says: “Our studies on how normal myosin 7 works pave the way for understanding how a defective myosin 7 protein in Usher patients results in deafness.”

Dr Peckham worked with colleagues Professor Peter Knight and Dr Tom Baboolal from the Faculty of Biological Sciences. This is a collaborative study with Prof Jim Seller's group at The National Heart, Lung and Blood Institute in the USA and has been funded by the BBSRC. It is published in the Proceedings of the National Academy of Sciences Online Early Edition this week.

Media Contact

Jo Kelly EurekAlert!

More Information:

http://www.leeds.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors