Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Links Photosynthesis Genes to Marine Virus Fitness

06.02.2009
A recent Northeastern University study has shown, for the first time, the effect of individual genes on the fitness of a marine species at the ecosystem level.

Using his innovative computer simulation model, engineering professor Ferdi Hellweger found that eliminating photosynthesis genes from viruses that attack important marine photosynthetic bacterial organisms will negatively impact the fitness of these viruses, ultimately killing them.

The findings, published in the journal Environmental Microbiology, have led to a new interdisciplinary field called “systems bioecology.” Combining systems biology and ecology, systems bioecology uses computer simulation to better understand the role of individual genes at the ecosystem scale.

With his computer simulation model, Hellweger “knocked out” the photosynthesis genes of cyanophages (viruses that attack marine cyanobacteria species such as Synechococcus and Prochlorococcus) to compare the fitness-level of these viruses to those containing the genes. Simulating a ten-year time span, he found that viruses without the photosynthesis genes were dead while the ones with the genes present survive.

The findings demonstrate that the fitness of cyanophage viruses is positively affected by the presence of photosynthesis genes.

Synechococcus and Prochlorococcus are known to be the most abundant photosynthetic organisms on Earth and play a major role in our carbon and climate cycles and the ocean ecosystem. Thus, finding out what factors influence the fitness and destructive impact of marine viruses on these bacteria is crucial in order to better understand the ecosystem.

The innovative computer simulation model can be expanded and modified using different genes and applying it to different species of other marine bacteria.

“Most of the biological science that comes out today is at the molecular level, but our models have not reached that point,” said Hellweger. “Systems bioecology has the potential for becoming widely used and the ‘method of choice’ for simulation in the post-genomic era.”

About Northeastern:
Founded in 1898, Northeastern University is a private research university located in the heart of Boston. Northeastern is a leader in interdisciplinary research, urban engagement, and the integration of classroom learning with real-world experience. The university’s distinctive cooperative education program, where students alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, is one of the largest and most innovative in the world. The University offers a comprehensive range of undergraduate and graduate programs leading to degrees through the doctorate in six undergraduate colleges, eight graduate schools, and two part-time divisions.

Jenny Catherine Eriksen | Newswise Science News
Further information:
http://www.northeastern.edu

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>